

# User's Manual

# *AM-1600GE AB-1600GE*

Digital Monochrome / Color Progressive Scan GigE Vision Camera

Document Version: Ver.1.0 AMB-1600GE\_ver.1.0\_Apr09

### Notice

The material contained in this manual consists of information that is proprietary to JAI Ltd., Japan and may only be used by the purchasers of the product. JAI Ltd., Japan makes no warranty for the use of its product and assumes no responsibility for any errors which may appear or for damages resulting from the use of the information contained herein. JAI Ltd., Japan reserves the right to make changes without notice.

Company and product names mentioned in this manual are trademarks or registered trademarks of their respective owners.

# Warranty

For information about the warranty, please contact your factory representative.

### Certifications

### CE compliance

As defined by the Directive 2004/108/EC of the European Parliament and of the Council, EMC (Electromagnetic compatibility), JAI Ltd., Japan declares that AM-1600GE-P, AM-1600GE-F,AB-1600GE-P and AB-1600GE-F comply with the following provisions applying to its standards.

EN 61000-6-3 (Generic emission standard part 1) EN 61000-6-2 (Generic immunity standard part 1)

### **FCC**

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into a outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

### Warning

Changes or modifications to this unit not expressly approved by the party responsible for FCC compliance could void the user's authority to operate the equipment.

# Supplement

The following statement is related to the regulation on "Measures for the Administration of the control of Pollution by Electronic Information Products", known as "China RoHS". The table shows contained Hazardous Substances in this camera.

mark shows that the environment-friendly use period of contained Hazardous Substances is 15 years.

### 重要注意事项

### 有毒,有害物质或元素名称及含量表

根据中华人民共和国信息产业部『电子信息产品污染控制管理办法』,本产品《 有毒,有害物质或元素名称及含量表 》如下.

|       | 有毒有害物质或元素   |           |           |                 |               |                 |  |  |
|-------|-------------|-----------|-----------|-----------------|---------------|-----------------|--|--|
| 部件名称  | 铅<br>( Pb ) | 汞<br>(Hg) | 镉<br>(Cd) | 六价铬<br>(Cr(VI)) | 多溴联苯<br>(PPB) | 多溴二苯醚<br>(PBDE) |  |  |
| 螺丝固定座 | ×           | 0         | 0         | 0               | 0             | 0               |  |  |
|       |             |           |           |                 |               |                 |  |  |

- 〇:表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006规定的限量要求以下。
- ×:表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006规定的限量要求。
- (企业可在此处、根据实际情况对上表中打"×"的技术原因进行进一步说明。)



### 环保使用期限

电子信息产品中含有的有毒有害物质或元素在正常使用的条件下不会发生外 泄或突变、电子信息产品用户使用该电子信息产品不会对环境造成严重污染 或对基人身、财产造成严重损害的期限。

数字「15」为期限15年。

# Supplement

The following statement is related to the regulation on "Measures for the Administration of the control of Pollution by Electronic Information Products", known as "China RoHS". The table shows contained Hazardous Substances in this camera.

mark shows that the environment-friendly use period of contained Hazardous Substances is 15 years.

### 重要注意事项

### 有毒,有害物质或元素名称及含量表

根据中华人民共和国信息产业部『电子信息产品污染控制管理办法』,本产品《有毒,有害物质或元素名称及含量表》如下.

|       | 有毒有害物质或元素 |           |           |                  |               |                 |  |  |
|-------|-----------|-----------|-----------|------------------|---------------|-----------------|--|--|
| 部件名称  | 铅<br>(Pb) | 汞<br>(Hg) | 镉<br>(Cd) | 六价铬<br>( Cr(VI)) | 多溴联苯<br>(PPB) | 多溴二苯醚<br>(PBDE) |  |  |
| 螺丝固定座 | ×         | 0         | 0         | 0                | 0             | 0               |  |  |
| 光学滤色镜 | ×         | 0         | ×         | 0                | 0             | 0               |  |  |
|       |           |           |           |                  |               |                 |  |  |

- ○:表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006规定的限量要求以下。
- ×: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006规定的限量要求。
- (企业可在此处、根据实际情况对上表中打"×"的技术原因进行进一步说明。)



### 环保使用期限

电子信息产品中含有的有毒有害物质或元素在正常使用的条件下不会发生外 泄或突变、电子信息产品用户使用该电子信息产品不会对环境造成严重污染 或对基人身、财产造成严重损害的期限。

数字「15」为期限15年。



# **Table of Contents**

| 1. | General                                                                         | 4  |
|----|---------------------------------------------------------------------------------|----|
| 2. | Camera nomenclature                                                             | 4  |
| 3. | Main Features                                                                   | 5  |
| 4. | Locations and Functions                                                         |    |
| 5. | Pin Assignment                                                                  |    |
| ٥. | 5.1 12-pin Multi-connector (DC-in/GPIO/Iris Video)                              |    |
|    | 5.2 Digital Output Connector for Gigabit Ethernet                               |    |
|    | 5.3 D-sub 9 pin connector for GPIO (Auxiliary)                                  |    |
|    | 5.4 Internal DIP switch                                                         |    |
| 6. | GPIO (Inputs and outputs)                                                       |    |
| υ. | 6.1 Overview                                                                    |    |
|    | 6.1.1 LUT (Cross Point Switch)                                                  |    |
|    |                                                                                 |    |
|    | 6.1.2 12-bit Counter                                                            |    |
|    | 6.1.3 Pulse Generators (0 to 1)                                                 |    |
|    | 6.2 Opto-isolated Inputs/Outputs                                                |    |
|    | 6.2.1 Recommended External Input circuit diagram for customer                   |    |
|    | 6.2.2 Recommended External Output circuit diagram for customer                  |    |
|    | 6.2.3 Optical Interface Specifications                                          |    |
|    | 6.3. Inputs and outputs table                                                   |    |
|    | 6.4. Configuring the GPIO module (register settings)                            |    |
|    | 6.4.1 Input/Output Signal Selector                                              |    |
|    | 6.4.2 12bit counter                                                             |    |
|    | 6.4.3 Pulse generators (19 bit x 2)                                             |    |
|    | 6.5. GPIO programming examples                                                  |    |
|    | 6.5.1 GPIO Plus PWC shutter                                                     |    |
| _  | 6.5.2 Internal Trigger Generator                                                |    |
| 7. | GigE Vision Streaming Protocol (GVSP)                                           |    |
|    | 7.1 Digital Video Output (Bit Allocation)                                       |    |
|    | 7.2 Bit Allocation (Pixel Format / Pixel Type) - AM-1600GE (monochrome)         |    |
|    | 7.2.1 GVSP_PIX_MON08 (8bit)                                                     |    |
|    | 7.2.2 GVSP_PIX_MONO10 (10bit)                                                   |    |
|    | 7.2.3 GVSP_PIX_MONO10_PACKED ( 10 bit )                                         |    |
|    | 7.2.4 GVSP_PIX_MON012 ( 12 bit )                                                | 19 |
|    | 7.2.5 GVSP_PIX_MONO12_PACKED ( 12 bit )                                         | 19 |
|    | 7.3 Bit Allocation (Pixel Format / Pixel Type) - AB-1600GE (Bayer mosaic color) | 19 |
|    | 7.3.1 GVSP_PIX_BAYGR8 " Bayer GR8 "                                             |    |
|    | 7.3.2 GVSP_PIX_BAYGR10 "Bayer GR10"                                             |    |
|    | 7.3.3 GVSP_PIX_BAYGR12 "Bayer GR12"                                             |    |
| 8. | Functions and Operations                                                        |    |
|    | 8.1 GigE Vision Standard Interface                                              |    |
|    | 8.2 Recommended Network Configurations                                          |    |
|    | 8.2.1 Verified Network Interface Cards (NICs)                                   |    |
|    | 8.2.2 Video data rate (network bandwidth)                                       |    |
|    | 8.2.3 Disable Firewalls                                                         |    |
|    | 8.2.4 Enabling Jumbo Frames                                                     |    |
|    | 8.2.5 Setting Receive Descriptors                                               |    |
|    | 8.2.6 Interrupt Moderation rate                                                 |    |
|    | 8.2.7 Calculating and setting Inter-Packet Delay                                |    |
|    | 8.2.8 Confirm the Filter Driver is used                                         |    |
|    | 8.2.9 Others                                                                    |    |
|    | 8.3 Basic functions                                                             |    |
|    | 8.3.1 Vertical binning functions (AM-1600GE only)                               |    |
|    | 8.3.2 Starting pixel - Bayer color mosaic                                       |    |
|    | 8.3.3 Partial Scanning                                                          | 30 |
|    |                                                                                 |    |

| 8.3.4 Electronic Shutter                                                        |      |
|---------------------------------------------------------------------------------|------|
| 8.3.1 Rear panel indicator                                                      |      |
| 8.3.2 Test signal generator                                                     |      |
| 8.4 Pre-processing functions (overview)                                         |      |
| 8.4.1 Blemish compensation (Register 0xA128) (AM-1600GE only)                   |      |
| 8.4.2 Shading Compensation (Pixel uniformity) (Register xA11C)(AM-1600GE only)  |      |
| 8.4.3 Programmable Look Up Table (LUT)                                          | . 33 |
| 8.4.4 Auto L/R channel balance (Registers 0xA0B8, 0xA0BC)                       |      |
| 8.5. Other functions                                                            |      |
| 8.5.1 Bayer White Balance (Register 0xA0D0) (AB-1600GE only)                    |      |
| 8.5.2 Automatic Gain Control(Registers, 0xA0B0 AGC select/0xA0B4 AGC reference) |      |
| 8.6. Sensor layout and timing                                                   |      |
| 8.6.1 CCD Sensor Layout                                                         |      |
| 8.6.2 Horizontal timing (Normal continuous mode)                                |      |
| 8.6.3 Vertical timing (Normal continuous mode)                                  |      |
| 8.6.4 Partial Scanning                                                          |      |
| 8.6.5 Vertical binning (AM-1600GE only)                                         |      |
| 8.5 Operation Modes                                                             |      |
| 8.5.1 Continuous operation                                                      |      |
| 8.5.2 Edge Pre-select Trigger Mode (EPS)                                        |      |
| 8.5.3 Pulse Width Control Trigger Mode (PWC)                                    |      |
| 8.5.4 Sequence Trigger Mode (EPS)                                               |      |
| 8.5.5 Delayed Readout Mode (EPS, PWC)                                           |      |
| 8.5.6 Optical Black transfer Mode                                               |      |
| 8.5.7 Multi ROI mode (Multi Region of Interest)                                 |      |
| 8.6 Operation Mode and Functions matrix                                         |      |
| 9. Register Map                                                                 |      |
| 10. External Appearance and Dimensions                                          |      |
| 11. Specifications                                                              | .60  |
| 11.1 Spectral response                                                          | . 60 |
| 11.2 Specification table                                                        | .61  |
| 12. Appendix                                                                    | .63  |
| 12.1. Precautions                                                               | .63  |
| 12.2. Typical Sensor Characteristics                                            | .63  |
| 12.3. Caution when mounting a lens on the camera                                |      |
| 12.4. Exportation                                                               |      |
| 12.5. References                                                                | . 64 |
| Changes history                                                                 | 1    |
| User's Record                                                                   | 2    |



### 1. General

The AM-1600GE and AB-1600GE are 16-megapixel, high resolution GigE Vision Compliant cameras for applications such as high density board inspection, flat panel display inspection, and so on. The AM-1600GE is a monochrome progressive scan CCD camera and the AB-1600GE is the equivalent Bayer mosaic progressive scan CCD camera. Both cameras have a 43.3mm diagonal CCD with 16 million pixels resolution and a continuous frame rate of 3.0 frames per second. The AM-1600GE and AB-1600GE support partial scan read out for faster frame rates. The AM-1600GE also has a vertical binning mode for a faster frame rate, as well as higher sensitivity.

The AM-1600GE has internal pre-processing circuits for blemish compensation, shading compensation and a LUT(Look Up Table). Both cameras accept external trigger pulses with EPS ,PWC, Sequential and Frame Delay modes available.

The Gigabit Ethernet digital output is selectable 8 bits, 10 bits or 12 bits. Lens mount options include F mount or Universal P mount, which is the factory option.

The AM-1600GE and AB-1600GE also comply with the GenlCam standard and contain an internal XML file that is used to describe the functions/features of the camera. For further information about the GigE Vision Standard, please go to <a href="https://www.machinevisiononline.org">www.machinevisiononline.org</a> and about GenlCam, please go to <a href="https://www.genicam.org">www.genicam.org</a>.

As an application programming interface, JAI provides a SDK (Software Development Kit). This SDK includes GigE Vision Filter Driver, JAI Control tool, software documentation and code examples.

The JAI SDK can be downloaded from www.jai.com.

The latest version of this manual can be downloaded from www.jai.com

For camera revision history, please contact your local JAI distributor.

### 2. Camera nomenclature

The standard camera composition consists of the camera main body and C-mount protection cap.

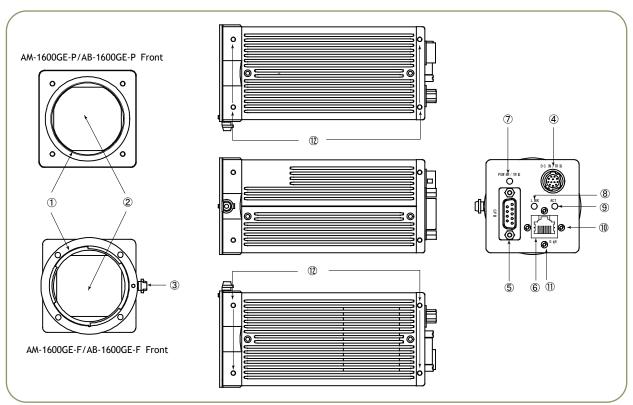
The camera is available in the following versions:

AM-1600GE-P, AM-1600GE-F

Where  $\underline{A}$  stands for "Advanced" family,  $\underline{M}$  stands for "Monochrome",  $\underline{1600}$  represents the resolution "16 million pixel" and  $\underline{GE}$  stands for "GigE Vision" interface.  $\underline{P}$  for the Universal P mount version and F for the Nikon F mount version.

### AB-1600GE-P, AB-1600GE-F

Where  $\underline{A}$  stands for "Advanced" family,  $\underline{B}$  stands for "Bayer mosaic color",  $\underline{1600}$  represents the resolution "16 million pixel" and  $\underline{GE}$  stands for "GigE Vision" interface.  $\underline{P}$  for the Universal P mount version and  $\underline{F}$  for the Nikon F mount version.


### 3. Main Features

- C3 Advanced series progressive scan camera
- GigE vision, GenICam compliant
- Monochrome and Bayer mosaic color versions
- KAI-16000 IT CCD, 43.3mm diagonal (35mm film size)
- 4872 (h) x 3248 (v) active pixels
- 7.4 µm square pixels
- 12- or 10- or 8-bit output
- 16 bits signal processing
- 3 frames/second with full resolution in continuous and triggered operation
- Variable partial scan is available with user-definable height and starting point
- 2X vertical binning mode (AM-1600GE only)
- Programmable shutter from 3 lines(296μs) to 3327 lines (328 ms)
- Edge Pre-select and Pulse Width Control trigger modes
- Sequence trigger mode for on-the -fly change of gain, exposure and ROI
- Built in programmable Look Up Table (LUT) for gamma, 0.45
- Blemish compensation circuit built in(AM-1600GE only)
- Shading compensation(pixel non-uniformity compensation)(AM-1600GE only)
- L/R channel balance
- AGC(Automatic Gain Control) circuit provided
- Built-in test pattern generator
- Exposure time from 1 line(98.66µs) to 2 sec.\* using Pulse Width trigger mode
- GPIO in combination with Pulse Width trigger for more precise exposure time
- One-push and manual Bayer white balance (AB-1600GE only)
- Programmable GPIO with opto-isolated inputs and outputs
- Two types of lens mounts available as factory option, Universal P mount or Nikon F mount
- Comprehensive software tools and SDK for Windows XP/Vista (32 bit"x86" and 64 bit "x64" JAI SDK Ver. 1.2.1 and after )

<sup>\*</sup>For best image quality, the maximum recommended exposure time is <6 frames (2 seconds), however, depending on your application, significantly longer exposure may still produce an acceptable signal-to-noise ratio, even without applying any external cooling.



### 4. Locations and Functions



Universal P mount (Note \*1) ① Lens mount Nikon F mount (Note\*2) ① Lens Mount ② CCD sensor 43.3mm diagonal CCD sensor 3 Lock knob Lens lock knob for Nikon F mount lens 4 12-pin connector DC +12V and GPIO interface ⑤ D-sub 9 pin connector Auxiliary GPIO interface (LVDS IN and TTL IN/OUT) 6 RJ-45 GigE Vision I/F. Accepts connector w thumbscrews. ⑦ LED Indication for Power and trigger inputs Indication for GigE Network condition: LINK 8 LED LED Indication for GigE Network condition: ACT Holes for RJ-45 thumbscrews Horizontal type (above and below RJ-45)(Note\*3) 10 Holes for RJ-45 thumbscrews Vertical type (left and right of RJ-45) (Note \*3)

\*1) Note: Rear protrusion on P-mount lens must be less than 11.0mm. \*2) Note: Rear protrusion on F-mount lens must be less than 12.0mm.

Mounting holes

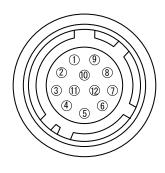
\*3) Note: When an RJ-45 cable with thumbscrews is connected to the camera, please do not excessively tighten screws by using a screw driver. The RJ-45 receptacle on the camera might be damaged. For security, the strength to tighten screws is less than 0.147 Newton meter (Nm). Tightening by hand is sufficient in order to achieve this. When D-SUB 9 pin connector is used, use the vertical type.

\*4) Note: The tripod adapter plate MP-41 can be used with AM/AB-1600GE

Fig.1 Locations

M3 depth 5 mm for tripod mount plate (Note \*4)

# 5. Pin Assignment

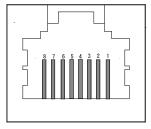

### 5.1 12-pin Multi-connector (DC-in/GPIO/Iris Video)

Type: HR10A-10R-12PB

(Hirose) male.

(Seen from the rear of

camera)

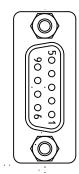



| Pin no. | Signal                           | Remarks       |
|---------|----------------------------------|---------------|
| 1       | GND                              |               |
| 2       | +12 V DC input                   |               |
| 3       | Opt IN 2 (-) / GND (*1)          |               |
| 4       | Opt IN 2 (+)/Iris Video out (*1) |               |
| 5       | Opt IN 1 ( - )                   |               |
| 6       | Opt IN 1 ( + )                   | GPIO IN / OUT |
| 7       | Opt Out 1 ( - )                  | GPIO IN / OUT |
| 8       | Opt Out 1 ( + )                  |               |
| 9       | Opt Out 2 ( - )                  |               |
| 10      | Opt Out 2 ( + )                  |               |
| 11      | + 12 V DC input                  |               |
| 12      | GND                              |               |

Fig. 2 12-pin connector.

### 5.2 Digital Output Connector for Gigabit Ethernet

Type: RJ-45 : HFJ11-1G02E-L21RL or equivalent




The digital output signals follow the Gigabit Ethernet interface using an RJ-45 conforming connector. To the right is a table with the pin assignment for Gigabit Ethernet connector.

Fig. 3 Gigabit Ethernet connector

| Pin No | In/Out | Name       |
|--------|--------|------------|
| 1      | In/Out | MX1+ (DA+) |
| 2      | In/Out | MX1- (DA-) |
| 3      | In/Out | MX2+ (DB+) |
| 4      | In/Out | MX3+ (DC+) |
| 5      | In/Out | MX3- (DC-) |
| 6      | In/Out | MX2- (DB-) |
| 7      | In/Out | MX4+ (DD+) |
| 8      | In/Out | MX4- (DD-) |

### 5.3 D-sub 9 pin connector for GPIO (Auxiliary)



Type: DD-09SSG

| No | 1/0 | Name      | Note                |
|----|-----|-----------|---------------------|
| 1  | I   | LVDS In1- |                     |
| 2  |     | LVDS In1+ |                     |
| 3  | I   | TTL IN 1  | 75ohm Terminator *1 |
| 4  | 0   | TTL Out 1 |                     |
| 5  |     | GND       |                     |
| 6  |     | NC        |                     |
| 7  |     | NC        |                     |
| 8  | 0   | TTL Out 2 |                     |
| 9  |     | GND       |                     |

Fig. 4 D-sub 9 pin connector

<sup>\*1:</sup> Iris Video output function can be set by the internal DIP switch (SW601).

<sup>\*1:</sup> can be changed by DIP SW(SW600).



### 5.4 Internal DIP switch

In order to change, the top cover must be removed.

SW600 For selection of TTL IN 1 75 ohm ON or OFF

Factory default is UP position (75 ohm OFF). To set 75 ohm ON, these two switches must be DOWN.



Right side, as seen from the lens side

Fig. 5 DIP switches

# 6. GPIO (Inputs and outputs)

### 6.1 Overview

All input and output signals pass through the GPIO (General Purpose Input and Output) module. The GPIO module consists of a Look-Up Table (LUT - Cross-Point Switch), 2 Pulse Generators and a 12-bit counter. In the LUT, the relationship between inputs, counters and outputs is governed by internal register set-up.

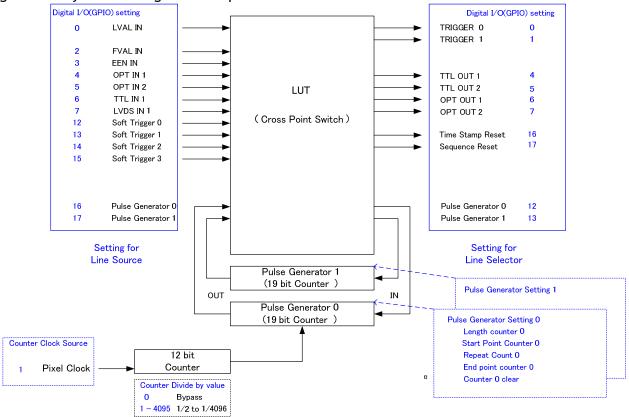



Fig. 6 GPIO interface

Some of the descriptions in this diagram differ from those displayed in the camera control tool. The following table shows display names and descriptions.

| Line S      | ource             | Line Selector |                    |  |
|-------------|-------------------|---------------|--------------------|--|
| Description | Display Name      | Description   | Display Name       |  |
| OPT IN 1    | Line5-Optical In1 | TTL OUT 1     | Line1-TTL Out1     |  |
| OPT IN 2    | Line6-Optical In2 | TTL OUT 2     | Line2-TTL Out2     |  |
| TTL IN 1    | Line7-TTL In      | OPT OUT 1     | Line3-Optical Out1 |  |
| LVDS IN 1   | Line8-LVDS In     | OPT OUT 2     | Line4-Optical Out1 |  |

The blocks shown in the above diagram have the following functionality:

### 6.1.1 LUT (Cross Point Switch)

The LUT works as a cross-point switch which allows connecting inputs and outputs freely. The signals LVAL\_IN, FVAL\_IN and EEN\_IN all originate from the camera timing circuit. On this diagram, "Trigger 0" is used for camera exposure and "Trigger 1" is used for Delayed Readout. The "Time Stamp Reset" signal can reset the time stamp specified in GigE Vision Format. This signal can be used when time stamps from several cameras connected are coincident with each other. The "Sequence reset" resets the sequential settings. Outputs from LUT described on the right side show GPIO settings for LINE SELECTOR in the JAI Camera Control tool and inputs to LUT on the left side show GPIO settings for LINE SOURCE in the JAI Camera Control tool. Refer to Chapter 6.3.

### 6.1.2 12-bit Counter

A camera pixel clock can be used as a source. The counter has a "Divide by N", where N has the range 1 through 4096, allowing a wide range of clock frequencies to be programmed. Setting value 0 is bypass, setting value 1 is 1/2 dividing, and setting value 4095 is 1/4096 dividing. As the pixel clocks for the AM-1600GE and AB-1600GE are 30 MHz, the output frequency is varied from 30MHz to 10.135 KHz.

### 6.1.3 Pulse Generators (0 to 1)

Each pulse generator consists of a 19-bit counter. The behavior of these signals is defined by their pulse width, start point and end point.

The pulse generator signals can be set in either triggered or periodic mode.

In triggered mode, the pulse is triggered by the rising edge, falling edge, high level or low level of the input signal. In periodic mode, the trigger continuously generates a signal that is based on the configured pulse width, starting point and end point.

Each pulse generator operates at the frequency created in the 12-bit counter. As the pixel clock (30 MHz) is used as the main frequency, the frequency of pulse generator is 30MHz to 10.135 KHz.

### 6.2 Opto-isolated Inputs/Outputs

The control interface of the C3 GigE Vision camera series has opto-isolated inputs and outputs, providing galvanic separation between the camera's inputs/outputs and peripheral equipment. In addition to galvanic separation, the opto-isolated inputs and outputs can cope with a wide range of voltages; the voltage range for inputs is +3.3V to +24V DC whereas outputs will handle +5V to +24V DC.

Fig. 7 Photo coupler

### 6.2.1 Recommended External Input circuit diagram for customer

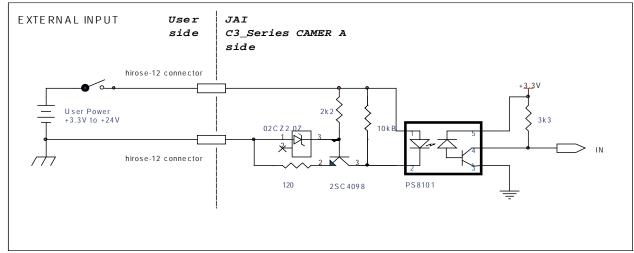



Fig.8 External Input Circuit, OPT IN 1 and 2

### 6.2.2 Recommended External Output circuit diagram for customer

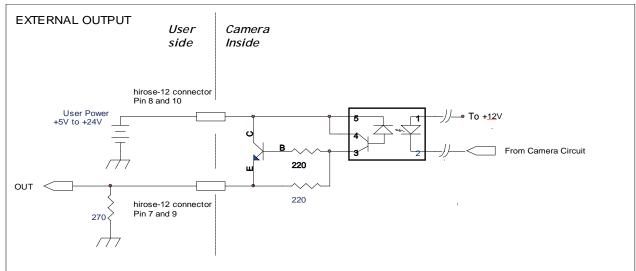
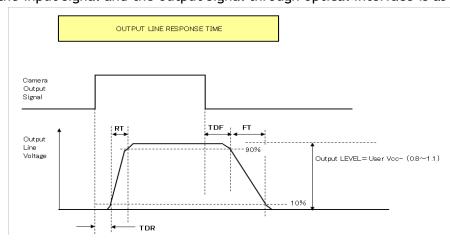




Fig.9 External Output Circuit, OPT OUT 1 and 2

### 6.2.3 Optical Interface Specifications

The relation of the input signal and the output signal through optical interface is as follows.





| Conditions for Input                 |              |  |  |  |  |  |
|--------------------------------------|--------------|--|--|--|--|--|
| Input Line Voltage Range             | +3.3V ∼ +24V |  |  |  |  |  |
| Input Current                        | 6mA ~ 30mA   |  |  |  |  |  |
| Minimum Input Pulse Width to Turn ON | 0.5μs        |  |  |  |  |  |

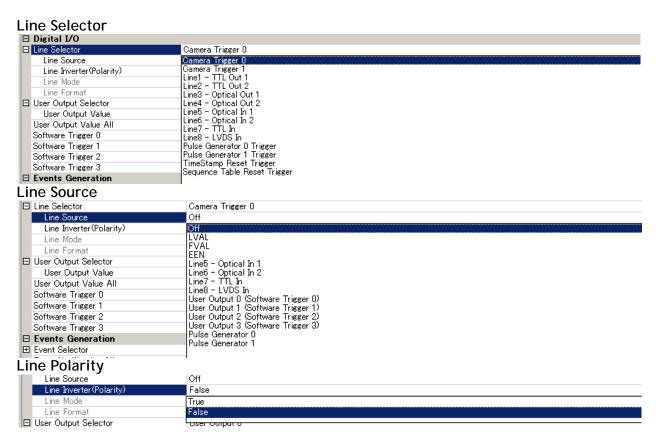
| Output Specifications        |               |  |  |  |  |  |
|------------------------------|---------------|--|--|--|--|--|
| Output Load(Maximum Current) | 100mA         |  |  |  |  |  |
| Minimum Output Pulse Width   | 20μs          |  |  |  |  |  |
| Time Delay Rise TDR          | 0.5μs ~ 0.7μs |  |  |  |  |  |
| Rise Time RT                 | 1.2μs ~ 3.0μs |  |  |  |  |  |
| Time Delay Fall TDF          | 1.5μs ~ 3.0μs |  |  |  |  |  |
| Fall Time FT                 | 4.0μs ~ 7.0μs |  |  |  |  |  |

Fig. 10 Optical Interface Performance

# 6.3. Inputs and outputs table

|             | Output Ports      |              |              |             |             |             |             |                        |                       |                          |                          |
|-------------|-------------------|--------------|--------------|-------------|-------------|-------------|-------------|------------------------|-----------------------|--------------------------|--------------------------|
|             |                   | Trigger<br>0 | Trigger<br>1 | OPT<br>OUT1 | OPT<br>OUT2 | TTL<br>OUT1 | TTL<br>OUT2 | Time<br>Stamp<br>Reset | Seque<br>nce<br>Reset | Pulse<br>Gener<br>ator 0 | Pulse<br>Gener<br>ator 1 |
|             | LVAL IN           | ×            | ×            | ×           | ×           | 0           | 0           | ×                      | ×                     | 0                        | 0                        |
|             | FVAL IN           | ×            | ×            | ×           | ×           | 0           | 0           | ×                      | ×                     | 0                        | 0                        |
|             | EEN IN            | ×            | ×            | 0           | 0           | 0           | 0           | ×                      | ×                     | 0                        | 0                        |
|             | OPT IN 1          | 0            | 0            | 0           | 0           | 0           | 0           | 0                      | 0                     | 0                        | 0                        |
|             | OPT IN 2          | 0            | 0            | 0           | 0           | 0           | 0           | 0                      | 0                     | 0                        | 0                        |
|             | TTL IN            | 0            | 0            | 0           | 0           | 0           | 0           | 0                      | 0                     | 0                        | 0                        |
|             | LVDS IN           | 0            | 0            | 0           | 0           | 0           | 0           | 0                      | 0                     | 0                        | 0                        |
| Input Ports | Soft<br>Trigger 0 | 0            | 0            | 0           | 0           | 0           | 0           | 0                      | 0                     | 0                        | 0                        |
| Input       | Soft<br>Trigger 1 | 0            | 0            | 0           | 0           | 0           | 0           | 0                      | 0                     | 0                        | 0                        |
|             | Soft<br>Trigger 2 | 0            | 0            | 0           | 0           | 0           | 0           | 0                      | 0                     | 0                        | 0                        |
|             | Soft<br>Trigger 3 | 0            | 0            | 0           | 0           | 0           | 0           | 0                      | 0                     | 0                        | 0                        |
|             | Pulse<br>Gen. 0   | 0            | 0            | 0           | 0           | 0           | 0           | 0                      | 0                     | ×                        | 0                        |
|             | Pulse<br>Gen. 1   | 0            | 0            | 0           | 0           | 0           | 0           | 0                      | 0                     | 0                        | ×                        |

LEGEND: 0 = valid combination / x = Not valid (do not use this combination)The shaded parts are for the interface to external equipment.


# 6.4. Configuring the GPIO module (register settings)

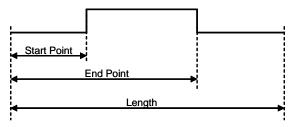
### 6.4.1 Input/Output Signal Selector

| Address                     | Internal Name                                   | GenICam Name                                              | Access | Size                                | Value (Range)                                                    |
|-----------------------------|-------------------------------------------------|-----------------------------------------------------------|--------|-------------------------------------|------------------------------------------------------------------|
| 0xB060                      | Selector CAMERA TRIGGER 0 (for Camera Trigger ) | $0  \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |        | GPIO Selector:<br>Line Source (SDK) |                                                                  |
| 0xB064                      | Selector CAMERA Trigger 1 (For Delayed Trigger) | Camera Trigger<br>1                                       | R/W    | 4                                   | 0x00:CAMERA LVAL IN<br>0x02:CAMERA FVAL IN<br>0x03:CAMERA EEN IN |
| 0xB070 Selector GPIO PORT 1 |                                                 | GPIO_Port1                                                | R/W    | 4                                   | 0x04:OPT 1 IN<br>0x05:OPT 2 IN                                   |

| 0xB074 | Selector GPIO PORT 2             | GPIO_Port2              | R/W | 4 | 0x06:TTL 1 IN<br>0x07:LVDS 1 IN                                                                                                                                                                                                                                                                  |
|--------|----------------------------------|-------------------------|-----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xB090 | Pulse Generator 0<br>Selector    | PulseGenerator<br>0     | R/W | 4 | 0x0C:USER OUT 0<br>0x0D:USER OUT 1<br>0x0E:USER OUT 2                                                                                                                                                                                                                                            |
| 0xB094 | Pulse Generator 1<br>Selector    | PulseGenerator<br>1     | R/W | 4 | 0x0F:USER OUT 3<br>0x10:Pulse Generator 0<br>0x11: Pulse Generator 1                                                                                                                                                                                                                             |
| 0xB0A0 | Selector Time Stamp<br>Reset     | TimeStamp<br>Reset      | R/W | 4 | 0x7F: No connect                                                                                                                                                                                                                                                                                 |
| 0xB0A4 | Selector Sequence Table<br>Reset | Sequence Table<br>reset | R/W | 4 | Line selector (SDK)  0x00:CAMERA Trigger 0  0x01:CAMERA Trigger 1  0x04:TTL OUT 1  0x05:TTL OUT 2  0x06:OPT OUT 1  0x07:OPUOUT 2  0x0C:Pulse Generator 0  0x0D:Pulse Generator 1  0x10:Time stamp reset  0x11:Sequence table reset  0x7F: No connect  Add 0x80 will result in low active output. |

The following shows the JAI SDK Camera Control Tool for setting GPIO registers.






### 6.4.2 12bit counter

| Address | Internal Name          | GenlCam Name   | Access | Size | Value (Range)                                                                              |
|---------|------------------------|----------------|--------|------|--------------------------------------------------------------------------------------------|
| 0xB000  | Counter Clock Choice   | ClockSource    | R/W    | 4    | 0x01: Pixel Clock                                                                          |
| 0xB004  | Counter Dividing Value | ClockPreScaler | R/W    | 4    | 0x000: Bypass<br>0x001: 1/2 Dividing<br>0x002: 1/3 Dividing<br> <br>0xFFF: 1/4096 Dividing |

### 6.4.3 Pulse generators (19 bit x 2)

There are 2 pulse generators (designated 0 through 1) that can be used to create various timing scenarios by programming start point, endpoint, length and repeats.



The following drawing is an example of settings.

FVAL is used for the input of Pulse Generator 0 and the clock after the rising edge of FVAL counts 100 clocks for the high period of the pulse and 102 clocks for the pulse length. As 2400 is for Clock Pre-scaler, the output of 12 bit counter is 25 KHz, which is  $40\mu$ s. Pulse Generator 0 creates a 4 ms pulse.

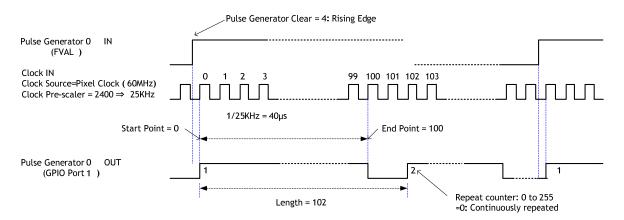
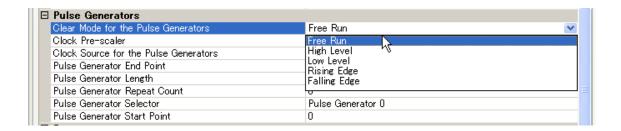



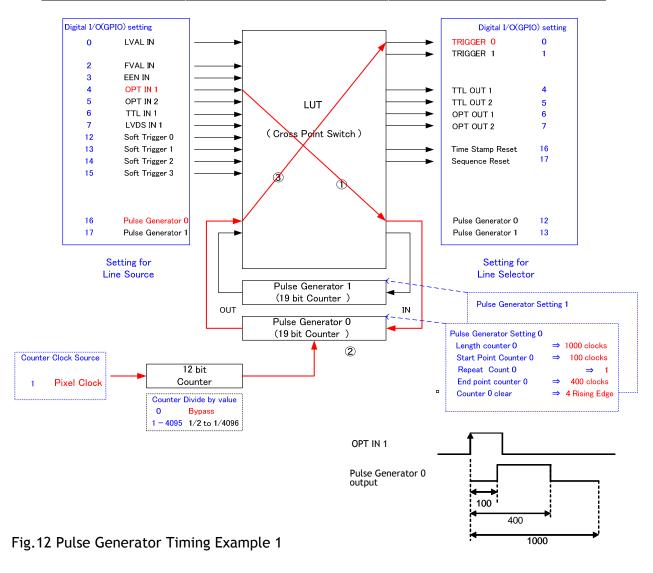

Fig.11 Example of Pulse Generator setting

The following shows JAI SDK Camera Control Tool for setting Pulse Generator.



| Address | Internal Name            | GenlCam name                  | Access | Size | Value (range)                                                                                                               |
|---------|--------------------------|-------------------------------|--------|------|-----------------------------------------------------------------------------------------------------------------------------|
| 0xB008  | Length Counter 0         | Pulse Generator<br>Length     | R/W    | 4    | 0x00001 to 0xFFFFF                                                                                                          |
| 0xB00C  | Start point Counter 0(1) | PulseGenerator<br>StartPoint  | R/W    | 4    | 0x00000 to 0xFFFFF                                                                                                          |
| 0xB010  | Start point Counter 0(2) | PulseGenerator<br>RepeatCOunt | R/W    | 4    | 0x00: infinite<br>0x01: 1 time<br> <br>0xFF: 255 times                                                                      |
| 0xB014  | End point Counter 0      | PulseGenerator<br>EndPoint    | R/W    | 4    | 0x00001 to 0xFFFFF                                                                                                          |
| 0xB018  | Counter Clear 0          | PulseGenerator<br>Clear       | R/W    | 4    | 0x00: Free Run<br>0x01: High Level Clear<br>0x02: Low Level Clear<br>0x04: Rising Edge Clear<br>0x08: Falling Edge<br>Clear |
| 0xB01C  | Length Counter 1         | Pulse Generator<br>Length     | R/W    | 4    | 0x00001 to 0xFFFFF                                                                                                          |
| 0xB020  | Start point Counter 1(1) | PulseGenerator<br>StartPoint  | R/W    | 4    | 0x00000 to 0xFFFFF                                                                                                          |
| 0xB024  | Start point Counter 1(2) | PulseGenerator<br>RepeatCount | R/W    | 4    | 0: Infinite 1: 1 time   255: 255 times                                                                                      |
| 0xB028  | End point Counter 1      | PulseGenerator<br>EndPoint    | R/W    | 4    | 0x00001 to 0xFFFFF                                                                                                          |
| 0xB02C  | Counter 1 Clear          | PulseGenerator<br>Clear       | R/W    | 4    | 0x00: Free Run 0x01: High Level Clear 0x02: Low Level Clear 0x04: Rising Edge Clear 0x08: Falling Edge Clear                |




### 6.5. GPIO programming examples

### 6.5.1 GPIO Plus PWC shutter

Example: 10µs unit pulse width exposure control (PWC).

Pixel clock is 30MHz. 300 clocks (400-100) equal 10µs.

|   | Address | Register                   | Value                         |
|---|---------|----------------------------|-------------------------------|
|   | 0xA040  | Trigger Mode               | 2 = PWC (Pulse Width Control) |
| 1 | 0xB090  | Pulse Generator 0 Selector | 4 =OPT IN 1                   |
|   | 0xB000  | Clock Choice               | 1 = Pixel Clock ( 60MHz )     |
| 2 | 0xB004  | Counter Dividing Value     | 0 = Pass through              |
|   | 0xB008  | Length Counter 0           | 1000 Clocks                   |
|   | 0xB00C  | Start point Counter 0(1)   | 100 Clocks                    |
|   | 0xB010  | Start point Counter 0(2)   | 1                             |
|   | 0xB014  | End point Counter 0        | 400 Clocks                    |
|   | 0xB018  | Counter Clear 0            | 4 = Rising Edge Clear         |
| 3 | 0xB060  | CAMERA TRIGGER Selector    | 16 = pulse generator 0        |
| 1 | 0xB090  | Pulse Generator 0 Selector | 4 = OPT IN 1                  |



### 6.5.2 Internal Trigger Generator

Example: Create a trigger signal and trigger the camera

|   | Address | Register                  | Value                  |
|---|---------|---------------------------|------------------------|
|   | 0xA040  | Trigger Mode              | 1 = EPS                |
| 1 | 0xB000  | Clock Choice              | 1 = Pixel Clock        |
|   | 0xB004  | Counter Dividing Value    | 2959 = 1/2960 dev(Line |
|   |         |                           | Rate)                  |
|   | 0xB008  | Length Counter 0          | 1000 Clocks            |
|   | 0xB00C  | Start point Counter 0 (1) | 100 Clocks             |
|   | 0xB010  | Start point Counter 0 (2) | 0 = Infinite           |
|   | 0xB014  | End point Counter 0       | 500 Clocks             |
|   | 0xB018  | Counter Clear 0           | 0 = Free Run           |
| 2 | 0xB060  | CAMERA TRIGGER Selector   | 16 = pulse generator 0 |

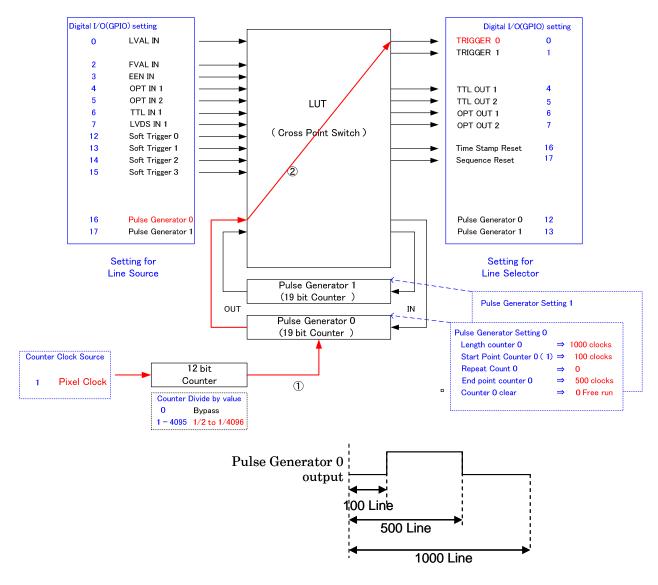



Fig. 13 Pulse Generator 0 timing Example 2



# 7. GigE Vision Streaming Protocol (GVSP)

### 7.1 Digital Video Output (Bit Allocation)

Although the AM-1600GE and AB-1600GE are digital cameras, the image is generated by an analog component, the CCD sensor.

The table and diagram below show the relationship between the analog CCD output level and the digital output.

| CCD out | Analog Cignal *  |         | Digital Out |          |
|---------|------------------|---------|-------------|----------|
| CCD out | Analog Signal *  | 8 bit   | 10 bit      | 12 bit   |
| Black   | Setup 3.6%, 25mV | 8 LSB   | 32 LSB      | 128 LSB  |
| 400mV   | 700mV            | 222 LSB | 890 LSB     | 3560 LSB |
| 460mV   | 800mV            | 255 LSB | 1023 LSB    | 4095 LSB |

The 10-bit digital output is set at 890 LSB as 100% video level when CCD output is 200mV. The white clip level is set at 1023 LSB when CCD output is 230mV.

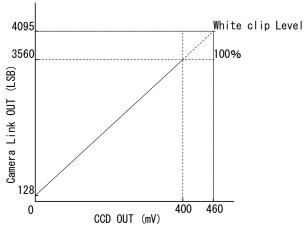



Fig.14 Digital Output

### 7.2 Bit Allocation (Pixel Format / Pixel Type) - AM-1600GE (monochrome)

In the GigE Vision Interface, GVSP (GigE Vision Streaming Protocol) is used for an application layer protocol relying on the UDP transport layer protocol. It allows an application to receive image data, image information and other information from a device.

In AM-1600GE, the following pixel types supported by GVSP are available.

With regard to the details of GVSP, please refer to GigE Vision Specification available from AIA (www.machinevisiononline.org).

### 7.2.1 GVSP\_PIX\_MONO8 (8bit)

| <u>1 I</u> | Ву | te |   |   |   |   |   | 2 | 2 By | /te |   |   |    |   |   |   | 3 B | yte |   |   |    |   |   |   |
|------------|----|----|---|---|---|---|---|---|------|-----|---|---|----|---|---|---|-----|-----|---|---|----|---|---|---|
|            |    |    |   | Υ | 0 |   |   |   |      |     |   | Υ | ′1 |   |   |   |     |     |   | Υ | ′2 |   |   |   |
| 0          | 7  | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 0    | 1   | 2 | 3 | 4  | 5 | 6 | 7 | 0   | 1   | 2 | 3 | 4  | 5 | 6 | 7 |

### 7.2.2 GVSP\_PIX\_MONO10 (10bit)

| 1 B | yte         |    |  |  |  |  |  | 2 B | yte |   |   |   |   |   |   | 3 B | yte |   |   |    |   |   |   | 4 B | yte |   |   |   |   |   |   |
|-----|-------------|----|--|--|--|--|--|-----|-----|---|---|---|---|---|---|-----|-----|---|---|----|---|---|---|-----|-----|---|---|---|---|---|---|
|     |             | Y0 |  |  |  |  |  |     |     |   | Υ | 0 |   |   |   |     |     |   | Υ | ′1 |   |   |   |     |     |   | Y | 1 |   |   |   |
| 0   | 1 2 3 4 5 6 |    |  |  |  |  |  | 8   | 9   | Χ | Χ | Χ | Χ | Χ | Χ | 0   | 1   | 2 | 3 | 4  | 5 | 6 | 7 | 8   | 9   | Χ | Х | Χ | Χ | Χ | Χ |

### 7.2.3 GVSP\_PIX\_MONO10\_PACKED ( 10 bit )

| • | 1 Byte                  | 2 Byte                  | 3 Byte                  | 4 Byte                  |
|---|-------------------------|-------------------------|-------------------------|-------------------------|
| Ī | Y0                      | Y1                      | Y2                      | Y3                      |
| ſ | 2 3 4 5 6 7 8 9 0 1 X X | 0 1 X X 2 3 4 5 6 7 8 9 | 2 3 4 5 6 7 8 9 0 1 X X | 0 1 X X 2 3 4 5 6 7 8 9 |

### 7.2.4 GVSP\_PIX\_MONO12 ( 12 bit )

|   | , |    |   |   |   |   |   | , | , |    |    |   |   |   |   | , | , |   |   |   |   |   |   | , |    |      |   |   |   |   |   |
|---|---|----|---|---|---|---|---|---|---|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|----|------|---|---|---|---|---|
|   |   | Y0 |   |   |   |   |   |   | Υ | 0  |    |   |   |   |   |   | Υ | 1 |   |   |   |   |   |   | Y1 | 1    |   |   |   |   |   |
| 0 | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Χ | Χ | Χ | Χ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 1 | 1 | Χ | Χ | Χ | Χ |

3 Byte

4 Byte

### 7.2.5 GVSP\_PIX\_MONO12\_PACKED ( 12 bit )

2 Byte

| 1 | В | yte | е                       |  |  |  |  |  |  |  |   |            |   | 2 I | Зу | te |   |   |   |   |   |   |    |    |   | 3 E | Byt | e |   |   |    |    |   |   |   |    |   | 1 E | Byt | e |   |   |   |   |   |   |    |    |  |
|---|---|-----|-------------------------|--|--|--|--|--|--|--|---|------------|---|-----|----|----|---|---|---|---|---|---|----|----|---|-----|-----|---|---|---|----|----|---|---|---|----|---|-----|-----|---|---|---|---|---|---|---|----|----|--|
|   |   | Y0  |                         |  |  |  |  |  |  |  | , | <b>Y</b> 1 |   |     |    |    |   |   |   |   |   |   | Υ  | 2  |   |     |     |   |   |   |    |    |   |   | ١ | ′3 |   |     |     |   |   |   |   |   |   |   |    |    |  |
|   | 4 | 5   | 5 6 7 8 9 10 11 0 1 2 3 |  |  |  |  |  |  |  |   | 3          | 0 | 1   | 2  | 3  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 4 | 5   | 6   | 7 | 8 | 9 | 10 | 11 | 0 | 1 | 2 | 3  | 0 | 1   | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |

| Address | Internal Name     | Access | Size | Value                                                                                                              |
|---------|-------------------|--------|------|--------------------------------------------------------------------------------------------------------------------|
| 0xA410  | Pixel Format type | R/W    | 4    | 0x01080001:Mono8<br>0x01100003:Mono10<br>0x010C0004:Mono10 Packed<br>0x01100005:Mono12<br>0x010C0006:Mono12 Packed |

### 7.3 Bit Allocation (Pixel Format / Pixel Type) - AB-1600GE (Bayer mosaic color)

In the GigE Vision Interface, GVSP (GigE Vision Streaming Protocol) is used for an application layer protocol relying on the UDP transport layer protocol. It allows an application to receive image data, image information and other information from a device.

In AB-1600GE, the following pixel types supported by GVSP are available.

With regard to the details of GVSP, please refer GigE Vision Specification available from AIA.

### 7.3.1 GVSP\_PIX\_BAYGR8 " Bayer GR8 "

Odd line

1 Byte

|     |      |     |   |   |   | 2B | yte   | yte 3Byte |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |
|-----|------|-----|---|---|---|----|-------|-----------|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|
| G0  |      |     |   |   |   |    | R1 G2 |           |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |
| 0   | 1    | 2   | ვ | 4 | 5 | 6  | 7     | 0         | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Eve | n li | ine |   |   |   |    |       |           |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |
| В0  |      |     |   |   |   | G1 |       |           |   |   |   |   |   | B2 |   |   |   |   |   |   |   |   |   |
| 0   | 1    | 2   | 3 | 4 | 5 | 6  | 7     | 0         | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

### 7.3.2 GVSP\_PIX\_BAYGR10 "Bayer GR10"

Odd line

| 1By | te   |    |   |    |   |   | 2E | Byte | 1  |   |   |    |   | 3 | Byt | е |   |   |   |    | 4 | 4By | te |   |   |   |   |          |   |   |   |
|-----|------|----|---|----|---|---|----|------|----|---|---|----|---|---|-----|---|---|---|---|----|---|-----|----|---|---|---|---|----------|---|---|---|
|     |      |    | G | iO |   |   |    |      |    |   | G | iO |   |   |     |   |   |   | R | 21 |   |     |    |   |   |   | F | <u>1</u> |   |   |   |
| 0   | 1    | 2  | 3 | 4  | 5 | 6 | 7  | 8    | 9  | Χ | Χ | Χ  | Χ | Χ | Х   | 0 | 1 | 2 | 3 | 4  | 5 | 6   | 7  | 8 | 9 | Χ | Χ | Χ        | Χ | Χ | Χ |
| Eve | n li | ne |   |    |   |   |    |      |    |   |   |    |   |   |     |   |   |   |   |    |   |     |    |   |   |   |   |          |   |   |   |
| В0  |      |    |   | В0 |   |   |    |      | G1 |   |   |    |   |   | G1  |   |   |   |   |    |   |     |    |   |   |   |   |          |   |   |   |
| 0   | 1    | 2  | 3 | 4  | 5 | 6 | 7  | 8    | 9  | Х | Х | Х  | Х | Х | Χ   | 0 | 1 | 2 | 3 | 4  | 5 | 6   | 7  | 8 | 9 | Х | Χ | Х        | Х | Х | Х |



7.3.3 GVSP\_PIX\_BAYGR12 " Bayer GR12"

| Odd | line |
|-----|------|
|     |      |

| 1  | Ву    | te   |    |   |    |   |       |   | 2By | te |    |    |   |   |   |   | ЗВу | te |   |   |   |   |   |   | 4Byte |   |    |    |   |   |   |   |
|----|-------|------|----|---|----|---|-------|---|-----|----|----|----|---|---|---|---|-----|----|---|---|---|---|---|---|-------|---|----|----|---|---|---|---|
|    | G0 G0 |      |    |   |    |   | R1 R1 |   |     |    |    |    |   |   |   |   |     |    |   |   |   |   |   |   |       |   |    |    |   |   |   |   |
|    | 0     | 1    | 2  | 3 | 4  | 5 | 6     | 7 | 8   | 9  | 10 | 11 | Χ | Χ | Χ | Χ | 0   | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8     | 9 | 10 | 11 | Χ | Χ | Χ | Χ |
| Ē  | ve    | n li | ne |   |    |   |       |   |     |    |    |    |   |   |   |   |     |    |   |   |   |   |   |   |       |   |    |    |   |   |   |   |
| В0 |       |      |    |   | B0 |   |       |   |     | G1 |    |    |   |   |   |   | G1  |    |   |   |   |   |   |   |       |   |    |    |   |   |   |   |
|    | 0     | 1    | 2  | 3 | 4  | 5 | 6     | 7 | 8   | 9  | 10 | 11 | Χ | Χ | Χ | Χ | 0   | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8     | 9 | 10 | 11 | Х | Х | Χ | Χ |

| Address | Internal Name     | Access | Size | Value                                                         |
|---------|-------------------|--------|------|---------------------------------------------------------------|
| 0xA410  | Pixel Format type | R/W    | 4    | 0x01080008:BAYGR8<br>0x0110000C:BAYGR10<br>0x01100010:BAYGR12 |

Note 1: AB-1600GE is set at the maximum area when the Bayer sequence starts at GR. Therefore, comparing full scanning and partial scanning, the center might be shifted.

# 8. Functions and Operations

### 8.1 GigE Vision Standard Interface

The AM-1600GE and AB-1600GE are designed in accordance with the GigE Vision standard. Digital images are transmitted over Cat5e or Cat6 Ethernet cables. All camera functions are also controlled via the GigE Vision interface.

The camera can operate in continuous mode, providing an endless stream of images. For capturing individual images related to a specific event, the camera can also be triggered. For precise triggering, it is recommended to use a hardware trigger applied to the Hirose 12-pin connector. It is also possible to initiate a software trigger through the GigE Vision interface. However, when using a software trigger, certain latency inherent to the GigE interface must be expected. This latency, which manifests itself as jitter, greatly depends on the general conditions and traffic on the GigE connection. The frame rate described in this manual is for the ideal case and may deteriorate depending on conditions.

When using multiple cameras (going through a switch and/or a single path) or when operating in a system with limited transmission bandwidth the Delayed Readout Mode and Inter-Packet Delay functions can be useful.

### 8.2 Recommended Network Configurations

Although the AM-1600GE and AB-1600GE conform to Gigabit Ethernet (IEEE 802.3), not all combinations of network interface cards (NICs) and Switches/Routers are suitable for use with the GigE Vision compliant camera.

JAI will endeavor to continuously verify these combinations, in order to give users the widest choice of GigE components for their system design.

### 8.2.1 Verified Network Interface Cards (NICs)

At the time of publishing this document, the following combinations have been verified:

| NIC<br>manufacturer | Model                                   | PCI Bus   | PCI-X Bus | PCI-Express<br>Bus |
|---------------------|-----------------------------------------|-----------|-----------|--------------------|
| Intel               | PRO/1000MT<br>(PWLA8490MT)              | √ (33MHz) | √(100MHz) | _                  |
| Intel               | PRO/1000GT<br>(PWLA8391GT)              | √ (33MHz) | √ (33MHz) | _                  |
| Intel               | PRO/1000PT<br>(EXPI9300PT)              | _         | -         | √ ( x1 )           |
| Intel               | Gigabit CT Desktop adaptor (EXPI9301CT) | _         | -         | √ ( x1 )           |
| Intel               | PRO/1000PT Quad port<br>(EXPI9404PT)    | _         | _         | √ ( x4 )           |
| Intel               | PRO/1000PT Dual port<br>(EXPI9402PT)    | _         | -         | √ ( x4 )           |



Minimum PC requirements are as follows in order to fulfill the above conditions:

- ◆ Intel Core 2 Duo , 2.4GHz or better / for AB-1600GE, Core 2 Extreme or better for AB-1600GE
- ♦ At least 2 GB memory
- ♦ Video Card with PCI Express Bus x 16, VRAM better than DDR2 with 256 MB or more, and display capability of 2560 x 1600
- ♦ Windows XP, SP2 (32bit)
- Functions such as Screen saver and Power save should not be used. Unnecessary applications such as Word, Excel or others should not be used.

Note: Pentium 4 type PC is not recommended due to dependency on chip set bus performance.

### 8.2.2 Video data rate (network bandwidth)

The video bit rate for AM-1600GE and AB-1600GE at the continuous mode is:

| Model     | Pixel Type      | Frame Rate | Packet data volume          |
|-----------|-----------------|------------|-----------------------------|
|           |                 |            | (for a Packet size of 4040) |
| AM-1600GE | MONO8           | 3.04 fps   | 390 Mbit/s                  |
|           | MONO10_PACKED   | 3.04 fps   | 585 Mbit/s                  |
|           | MONO12_PACKED   |            |                             |
|           | MONO10          | 3.04 fps   | 780 Mbit/s                  |
|           | MONO12          |            |                             |
| AB-1600GE | BAYGR8,         | 3.04 fps   | 390 Mbit/s                  |
|           | BAYGR10,BAYGR12 | 3.04 fps   | 780 Mbit/s                  |
|           |                 |            |                             |

Note: The above data assumes that OB transfer mode is OFF.

♦ If using 16KB Jumbo Frames, the packet data will be improved by a maximum of 1 % except Mono8, BAY8.

To ensure the integrity of packets transmitted from the camera it is recommended that users follow these simple guidelines:

- 1. Whenever possible use a peer-to-peer network.
- 2. When connecting several cameras, going through a network switch, make sure it is capable of handling jumbo packets and that it has sufficient memory capacity.
- 3. Configure inter-packet delay to avoid congestion in networks switches.
- 4. Disable screen saver and power save functions on computers.
- 5. Use high performance computers with multi-CPU, hyper-thread and 64-bit CPU, etc.
- 6. Only use Gigabit Ethernet equipment and components together with the camera.
- 7. Use at least Cat5e and preferably Cat6 Ethernet cables.
- 8. Whenever possible, limit the camera output to 8-bit.

### Note for setting packet size

The packet size is set to 1476 as factory default. Packet size can be modified in the GigE Vision Transport layer Control section of the camera control tool. For AM-1600GE and AB-1600GE, users may enter any value for the packet size and the value will be internally adjusted to an appropriate, legal value that complies with the GenICam standard. Thus, the actual packet size may be different than the value entered by user. Regarding the data transfer rate, a larger packet size produces a slightly lower data transfer rate. The AM-1600GE and AB-1600GE can support a maximum packet size of 16020 bytes if the used NIC has a Jumbo Frames function with setting of 16020 bytes or higher. The following table shows the list for packet size setting step.

### ◆ Note for calculation of Data Transfer Rate

Setting parameter

| Item                                               | Unit      | Symbol |
|----------------------------------------------------|-----------|--------|
| Image Width                                        | [pixels]  | Α      |
| Image Height                                       | [pixels]  | В      |
| Bits per Pixel                                     | [bits]    | C      |
| Frame Rate                                         | [fps]     | D      |
| Packet Size                                        | [Bytes]   | Ε      |
| Number of Packets (including Data Leader & Trailer | [packets] | G      |
| Packet)                                            |           |        |
| Data Transfer Rate                                 | [Mbit/s]  | J      |

### Fixed value

| Item                     | Unit    | value |
|--------------------------|---------|-------|
| Data Leader Packet Size  | [Bytes] | 90    |
| Data Trailer Packet Size | [Bytes] | 62    |

### Formula to calculate Data Transfer Rate

 $\underline{J} = \{90+62+(E+18)*(G-2)\}*8*D/1000000$ 

Where,

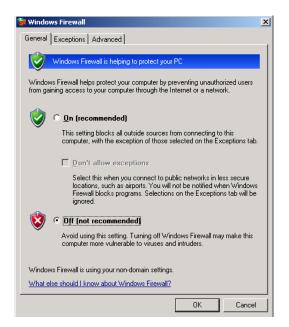
 $G=ROUNDUP\{A*B*C/8/(E-36)\}+2$ 

The following table shows Bits per Pixel (C) which depends on the pixel format.

| Pixel format | Bit |
|--------------|-----|
| MONO8        | 8   |
| MONO10       | 16  |
| MONO10Packed | 12  |
| MONO12       | 16  |
| MONO12Packed | 12  |
| BAYGR8       | 8   |
| BAYGR10      | 16  |
| BAYGR12      | 16  |



### Calculation example: AM-1600GE Pixel type Mono8

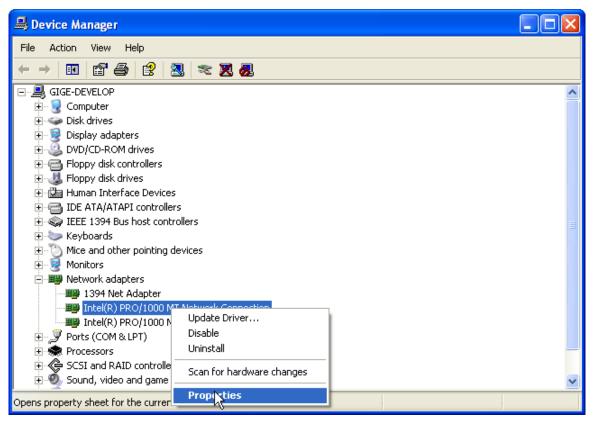

| Item                                                       | Unit      | Symbol | Setting |
|------------------------------------------------------------|-----------|--------|---------|
| Image Width                                                | [pixels]  | Α      | 4872    |
| Image Height                                               | [pixels]  | В      | 3248    |
| Bits per Pixel                                             | [bits]    | С      | 8       |
| Frame Rate                                                 | [fps]     | D      | 3.04    |
| Packet Size                                                | [Bytes]   | Е      | 4040    |
| Number of Packets (including Data Leader & Trailer Packet) | [packets] | G      |         |
| Transfer Data Rate                                         | [Mbit/s]  | J      |         |

G=ROUNDUP  $\{(4872 \times 3248 \times 8 / 8 / (4040-36)) + 2 = 3953 + 2 = 3955$ J= $\{90+62+(4040+18)\times(3955-2)\} \times 8 \times 3.04 / 1000000 = 390$ Mbit/s

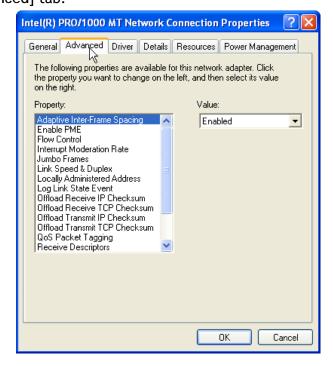
### 8.2.3 Disable Firewalls

To ensure proper functions of the JAI SDK & Control Tool, all firewalls must be disabled. This also includes the Windows firewall.

Click [Start], [Control Panel] for accessing the Windows firewall configuration.

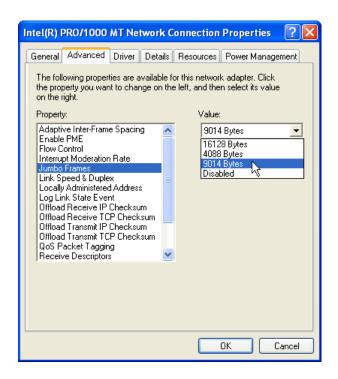



### 8.2.4 Enabling Jumbo Frames


- (1) Click [Start] and click [Control Panel].
- (2) Click [Performance and Maintenance].
- (3) Click [System].
- (4) Click [Hardware] tab.
- (5) Click [Device Manager].



- (6) Expand [Network adapters].
- (7) Select target NIC, right-click, and click [Properties].

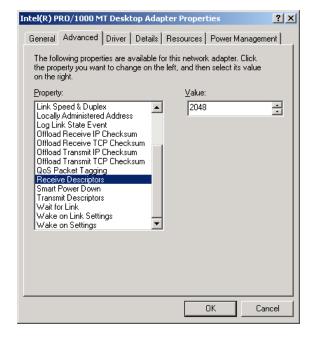



Note: The following procedure uses Intel(R) 1000 NIC as an example. If a different NIC is used, the setup tabs will likely be different from those shown here. Follow the tabs associated with the specific NIC used. (8)Click [Advanced] tab.





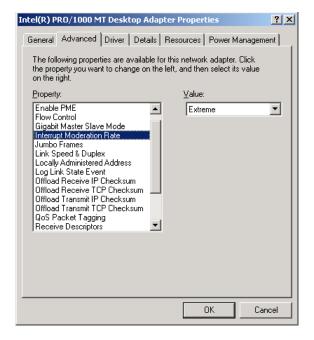
(9) Select the Jumbo Frames of Property, and select 16128 under Value.




- (10)Click [OK].
- (11)Close [Device Manager].
- (12)Close [System Properties] by clicking [OK].

### 8.2.5 Setting Receive Descriptors

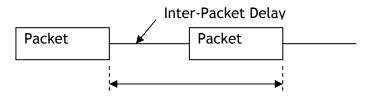
If the Network Connection Properties list contains a property called Receive Descriptors, then change its property to the maximum value supported by the NIC installed in the computer.


Click "OK" to save the property.



### 8.2.6 Interrupt Moderation rate

If the Network Connection Properties list contains a property called Interrupt Moderation Rate, then it is possible to set the preferred value. When it is changed from Minimal, Medium, High and Extreme, number of interruption is decreased to get better performance. Set it to "Extreme".


Click "OK" to save the property.



### 8.2.7 Calculating and setting Inter-Packet Delay

When connecting several cameras to one network interface card via a switching hub, it is important to optimize the Inter-Packet Delay of the cameras to avoid congestion in the switch. A sure sign of congestion is the loss of packets.

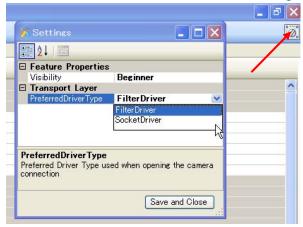
Since increasing the inter-packet delay also adds overhead to the data transfer it is important to calculate the optimal setting in order to make best use of the video bandwidth.



Duration of the entire packet, with delay


### 8.2.8 Confirm the Filter Driver is used

The filter driver is installed as an optional function when JAI SDK is installed. If the
filter driver is not installed at that time, it can be installed, All Programs ⇒ JAI SDK
⇒ GigE Vision Filter Driver ⇒ Install GigE Vision Filter Driver.






♦ If the Filter Driver is installed properly, the Camera Control Tool indicates "Driver Type Filter Driver" in the Network Interface.



• If it is not shown, confirm the setting as click "Settings Tab".



### 8.2.9 Others

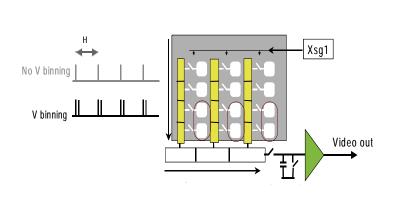
- ◆ If "Receive Descriptor" is set at its maximum value, same picture disturbance may occur due to "Hyper Threading" mode. If it happens, check that "Hyper Threading" is set at OFF. This is set in BIOS.
- When the image is being captured, if the frame rate is decreased, change the packet size. Each packet contains the header data and when the packet size is small, the total data including header information will increase. Depending on the performance of the computer used, the frame rate may be decreased. Confirm the packet size is increased. It can be set using the Camera Control Tool provided in JAI SDK.

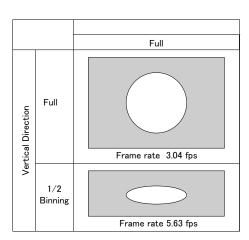
### 8.3 Basic functions

The AM-1600GE/AB-1600GE camera is a progressive scan camera with a 16-mega pixel monochrome or Bayer mosaic color CCD. The interface to host PC is via Gigabit Ethernet. Both models output digital video as 8-, 10- or 12-bit. The color version, AB-1600GE, outputs raw Bayer video. The camera also features several pre-processing functions (see chapter 8.4). The camera has a partial scan function selectable as user programmable. It also features vertical binning mode (AM-1600GE only) for a faster frame rate and higher sensitivity. There are 4 trigger modes in addition to continuous operation. Edge Pre-Select (EPS), Pulse Width Control (PWC), Sequence (in EPS mode) and Delayed Readout (in EPS and PWC modes) are available trigger modes.

The functions are described in detail below.

### 8.3.1 Vertical binning functions (AM-1600GE only)


This function is only available on the AM-1600GE camera.


The AM-1600GE incorporates the vertical binning mode described below.

The vertical binning mode is a function where the signal charges from 2 adjacent pixels in vertical direction are added together and read out as one pixel. Binning results in half the vertical resolution but a higher frame rate and higher sensitivity.

The frame rate of vertical binning is calculated as follows. 1 line in 2x binning mode = 3200 (clk) x 33.333333ns =  $106.66\mu$ s Total lines = 1665 lines

Frame rate = 1/(3200\*1665\*33.33333/1000000000)=5.63 fps





| Setting          | Value for Register | Resolution               | Frame rate        |
|------------------|--------------------|--------------------------|-------------------|
|                  | address 0xA084     | (in Output Video)        |                   |
| Off (no binning) | 0x01               | 4872(h) x 3248(v) pixels | 3.04 frames/sec.  |
| 2:1 binning      | 0x02               | 4872(h) x 1624(v) pixels | 5.63 frames /sec. |

Fig.15 Binning modes



### 8.3.2 Starting pixel - Bayer color mosaic

The AB-1600GE is a color camera based on a CCD sensor with a Bayer RGB color mosaic.

The color image reconstruction is done in the host PC. The color sequence in the video signal is dependent on the scan modes.

The AB-1600GE starts with a GR sequence in full scan mode. In partial scan mode, the starting line is user programmable (see next section). When an odd line is selected for the start, it starts with the GRG sequence. When an even line is selected, it starts with BGB sequence.

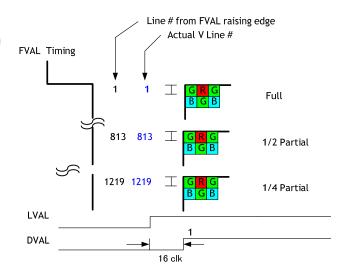



Fig. 16 Bayer layout

### 8.3.3 Partial Scanning

The partial scanning function employed in AM/AB-1600GE is programmable.

The height of the image can be set from 800 lines as the minimum height and expanded to 3248 lines which is the full scan image. The starting point of the scan can be set from the first line to 2449th line, when the height is set to 800 lines.

The following describes the programmable partial scan image.

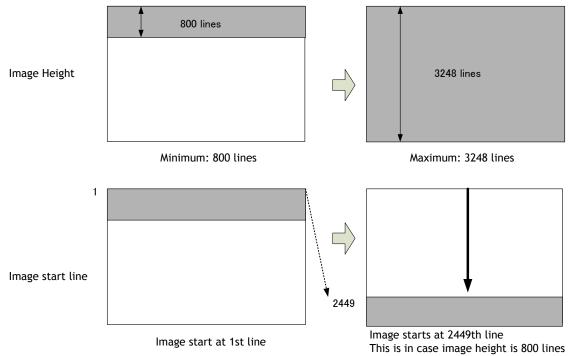



Fig.17 Variable partial scanning

### 8.3.4 Electronic Shutter

The AM-1600GE/AB-1600GE allows the shutter speed to be selected in three ways; Programmable Shutter (up to 3327 line periods, 1 LVAL increments), Auto Shutter and Exposure Time Abs which is the GenICam standard.

### ◆ Programmable Shutter

The exposure time can be programmed in 98.6 µs (LVAL period) increments. The range is from 3 LVAL to 3327 LVAL. (See the register map included in the SDK documentation for details how to configure this register - 0xA008)

|           | Minimum Shutter Time 3L    | Maximum Shutter Time         |
|-----------|----------------------------|------------------------------|
| Normal    | 98.6μs(1L) * 3L = 295.8 μs | 98.6 µs * 3327L≈ 328 ms      |
| V Binning | 106.6 μs * 3 L = 319.8 μs  | 106.6 µs * 1665 L ≈ 177.5 ms |

where, L is LVAL.

### ◆ Exposure Auto Continuous (Auto Shutter)

In this mode, the shutter continuously functions in order to get proper video output level in accordance with incoming light. The range of control is OFF(1/3 second) to 1/101.35 second.

### ◆ Exposure Time Abs (GenlCam Standard)

This is a function specified in the GenlCam standard.

The shutter speed can be entered as an absolute exposure time in microseconds ( $\mu$ s) in register address 0xA018. The entered absolute time (Time Abs) is then converted to programmable exposure (PE) value inside the camera.

The formula below shows the relationship between the PE value used by the camera for the different readout modes and the value entered in register 0xA018. Due to rounding down, some errors may occur.

The relation between PE value and Time Abs

Normal readout PE= 3 + INT (Exposure time -296)  $\mu s / (2960/30000000)$  V Binning readout PE= 3 + INT (Exposure time -320)  $\mu s / (3200/30000000)$ 

Note: INT means round down

The following table shows minimum value and maximum value for each readout mode.

|                  | Minimum value | Maximum Value |
|------------------|---------------|---------------|
| Normal Scan      | 296 µs        | 328264 µs     |
| 1/2 Partial Scan | 296 μs        | 181448 µs     |
| 1/4 Partial Scan | 296 μs        | 108040 μs     |
| V-Binning Scan   | 320 µs        | 177600 µs     |

### ◆ GPIO in combination with Pulse Width Control trigger

More precise exposure time can be obtained by using GPIO in combination with Pulse Width mode. The clock generator and counter can be programmed in very fine increments. For an example, refer to chapter 6.5.1.



### 8.3.1 Rear panel indicator

The rear panel mounted LED provides the following information: Power Trig LED

- Amber: Power connected initiating OS( approx. 20sec.)
- Red: Initiating the application (approx. 10sec.)
- Steady green: Camera is operating in continuous mode
- \* Flashing green: Camera is receiving an external trigger

### LINK LED

- Steady green: 1000 Base-T has been connected
- No light: Not connected

### ACT LED

- Steady Amber: Network active in communication
- No light: Network in stand-by

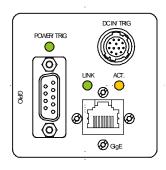



Fig. 18 Rear Panel

Note: When the trigger is input in continuous mode, LED is not flashing. The flashing period does not coincide with the trigger interval.

### 8.3.2 Test signal generator

The AM-1600GE and the AB-1600GE have the Moving Ramp Scale test pattern generators. While the test pattern is selected, the video output is disabled. This function does not depend on the gain and offset. This function can be set by register but the setting is not stored in the memory.

### 8.4 Pre-processing functions (overview)

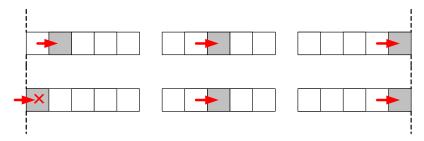
The AM-1600GE and the AB-1600GE have several pre-processing functions. The output from the camera is selectable from 8, 10 or 12-bit but the internal processing uses 16 bits quantization to digitize signals. Accordingly, the processing in the 16-bit domain results in a more precise image. The pre-processing functions include blemish compensation, shading compensation (including pixel non-uniformity), LUT(Look Up Table) and auto channel balance . A brief description of each function is included on the following pages.

### 8.4.1 Blemish compensation (Register 0xA128) (AM-1600GE only)

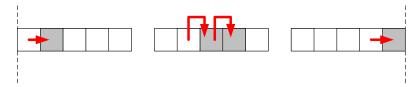
The AM-1600CL has a blemish compensation circuit which may be set ON or OFF and a blemish detection function. This function compensates for blemishes on the CCD sensor (typically pixels with extremely high response or extremely low response). The detection process starts with black blemishes and then identifies white blemishes. The order of detection cannot be reversed. This applies to monochrome model only. Pixels that fulfill the blemish criteria can be compensated by using the adjacent pixel on the left side column as shown in the following figure.

There is no limit to the number of pixels that can be compensated. As L channel and R channel images are composed as one image inside the camera, there is also no limitation on L channel and R channel compensation. When the circuit is set at ON, the default data (factory setting) can be used. This is OFF when shipped from the factory.

Functions Blemish compensation \* ON or OFF


Detection process for black and while blemishes (see note)

Store the blemish data Load the blemish data


Verify the data in RAM with Flash memory

Note: After completing the detection, the camera will run normally.

When the leftmost pixel has a blemish, it cannot be compensated because there is no data for compensation.



When two or more consecutive pixels have blemishes, the leftmost pixel with a blemish is compensated by the left normal pixel data and the second pixel is then compensated by the left pixel which is already compensated.



The default setting is Disable(OFF).

Fig.19 Blemish compensation (concept drawing)

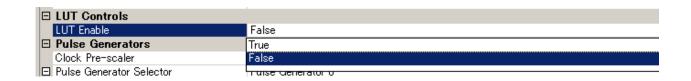
### 8.4.2 Shading Compensation (Pixel uniformity) (Register xA11C)(AM-1600GE only)

The shading compensation function can compensate different gain and offset on each pixel as well as the shading caused by lighting or optics. It is possible to use offset only (black-level correction) or offset and gain corrections in sequence.

Functions Black pixel level compensation

Black pixel level and bright pixel gain compensation

Black level calibration Bright gain calibration


Store the result of compensation

Load the stored data

Verify the data in RAM with Flash memory

### 8.4.3 Programmable Look Up Table (LUT)

The AM-1600GE and AB-1600GE have a programmable look-up table (LUT) that has a 256 setting points (for Knee and gamma) which can be applied to the full range of input signal. When LUT Enable is set at True, gamma 0.45 is applied.





### 8.4.4 Auto L/R channel balance (Registers 0xA0B8, 0xA0BC)

The AM-1600GE and AB-1600GE have a dual-tap readout architecture, with a Left (L) and Right (R) channel. In order to achieve the same gain and black level for both channels, the AM-1600GE and AB-1600GE have independent control for L channel and R channel gain and offset. In order to balance both channels, the balancing uses L channel as the reference and R channel is adjusted so as to have the same level as that of L channel for both gain and offset. For channel balancing, one-push operation or manual control can be applied.

Note: R/L channel balance must be set in Normal mode.

### 8.5. Other functions

#### 8.5.1 Bayer White Balance (Register 0xA0D0) (AB-1600GE only)

Normally, the raw Bayer color signals are sent to the host PC as they are. In the host PC, the signals are interpolated to generate an RGB image and perform white balance. In order to offload the host, the AB-1600GE can adjust Gr, R, Gb and B levels individually to get the white balance for the Bayer output signal. The gain is fixed to 1.0 for AM-1600GE. The Bayer White Balance function includes manual white balance and one-push auto white balance.

Note: Bayer white balance must be set in Normal mode.

8.5.2 Automatic Gain Control(Registers, OxAOBO AGC select/OxAOB4 AGC reference)
This function maintains a constant output level in accordance with ambient brightness changes. This function is controlled by the set AGC command, which may be set to ON or OFF. The range for Automatic gain control is from -3dB to +12dB.

Note: This is available only in Normal mode.

### 8.6. Sensor layout and timing

### 8.6.1 CCD Sensor Layout

The CCD sensor layout with respect to pixels and lines used in the timing and video full frame read out is shown below.

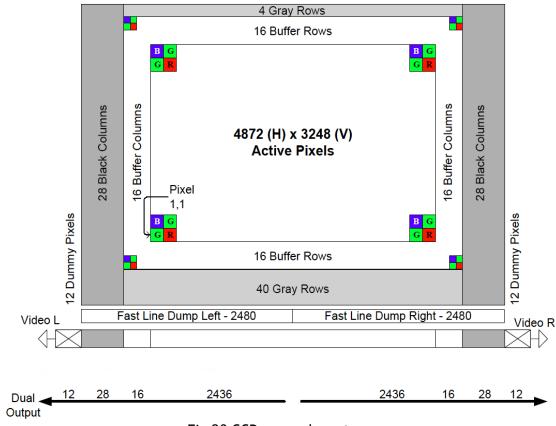
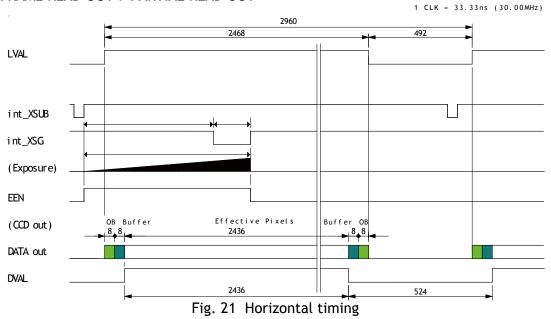



Fig.20 CCD sensor layout


Important Note: In the GigE Vision Standard, only the video part is normally transferred. In AM-1600GE and AB-1600GE, OB transfer mode can be selected. By using this mode, the user can add to the transfer a total of 48 additional pixels, including 8 pixels of OB and 16 pixels of buffer on the right end and 8 pixels of OB and 16 pixels of buffer on the left end.



### 8.6.2 Horizontal timing (Normal continuous mode)

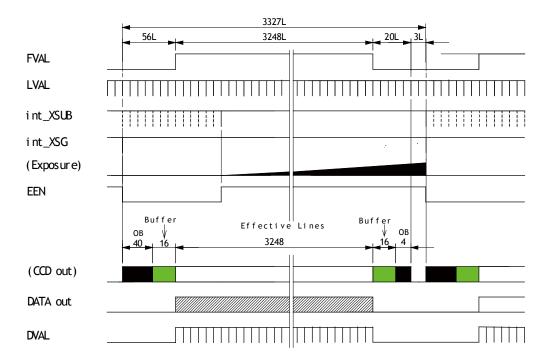
The LVAL period is shown for normal continuous mode.

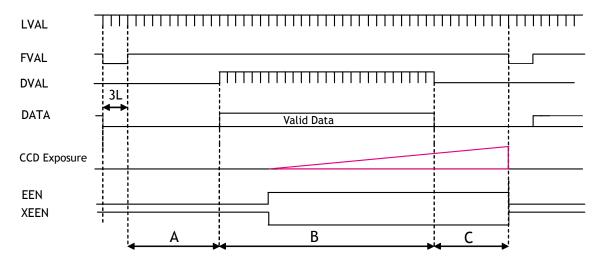
### FULL FRAME READ OUT / PARTIAL READ OUT



### 8.6.3 Vertical timing (Normal continuous mode)

The FVAL period for normal continuous mode full scan is shown.





Fig. 22 Vertical timing for full scan

### 8.6.4 Partial Scanning

The timing for the partial scan mode in normal continuous mode is shown below.

#### Vertical Timing

The diagram below provides the vertical timing information.



### Frame rate calculation formula

The frame rate can be calculated using the following formula. In this formula, "Ceil" is round up. And(Top\_Dump\_line + Partial lines + Bottom\_Dump\_line)=3248

<u>Total lines = 59 + A\_line + Partial lines + B\_line + 20</u> Frame Rate (fps) = 1 / (2960 \* Total lines \* 33.333333 / 1000000000)

### Where,

A \_line Ceil{(Top\_Dump\_line + 3)/12}, If Top\_Dump\_Line is 0, A\_line is 0.

B\_line Ceil{(Bottom\_Dump\_line + 3)/12}, If Bottom\_Dump\_line is 0, B\_line is 0.

#### Example:

| Case | Partial lines | Start line | H period<br>(clock) | V period<br>(Lines) | Frame rate (fps) | Calculation      |
|------|---------------|------------|---------------------|---------------------|------------------|------------------|
| 1    | 1/2 (1624)    | 0          | 2960                | 1839                | 5.51             | 59+0+1624+136+20 |
| 2    | 1/2 (1624)    | 812        | 2960                | 1839                | 5.51             | 59+68+1624+68+20 |
| 3    | 1/2 (1624)    | 1624       | 2960                | 1839                | 5.51             | 59+136+1624+0+20 |
| 4    | 1/4(812)      | 0          | 2960                | 1095                | 9.25             | 59+0+812+204+20  |
| 5    | 1/4(812)      | 812        | 2960                | 1095                | 9.25             | 59+68+812+136+20 |
| 6    | 1/4(812)      | 2436       | 2960                | 1095                | 9.25             | 59+204+812+0+20  |

Fig. 23 Vertical timing for partial scanning



### ■ Horizontal Timing

The horizontal timing is the same as the Normal continuous mode.

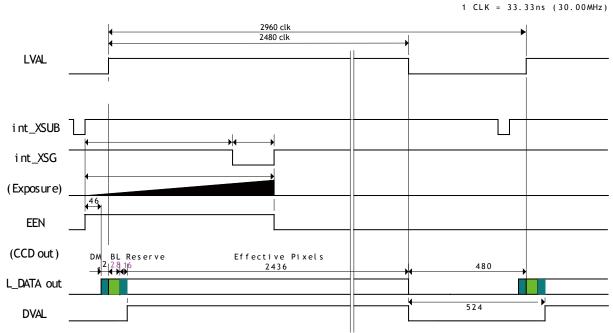



Fig.24 Horizontal Timing for Partial Scanning

### 8.6.5 Vertical binning (AM-1600GE only)

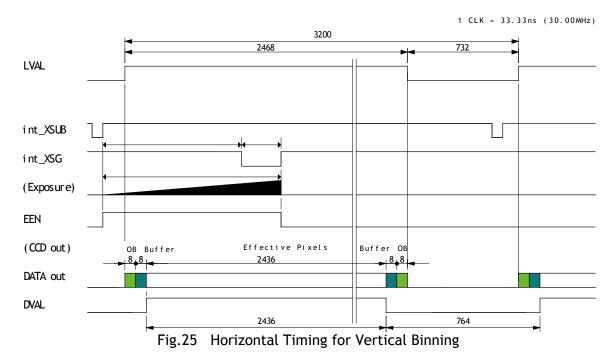
This function is available only for AM-1600GE.

The AM-1600GE has vertical binning mode. The vertical binning function combines charges from two adjacent rows, reducing the resolution to half and at the same time increasing frame rate and sensitivity. By activating this function, the frame rate is increased to 5.63 fps.

### Important Note

Vertical binning cannot be used together with Partial scanning.

### Frame rate calculation formula


The frame rate can be calculated as follows:

1 line in 2x binning mode = 106.66µs

Total lines = 1665 lines

Frame rate = 1/(3200\*1665\*33.33333/1000000000)=5.63 fps

### ■ Horizontal Timing (X2 vertical binning, Continuous mode)



Vertical timing (X2 vertical binning, Continuous mode)

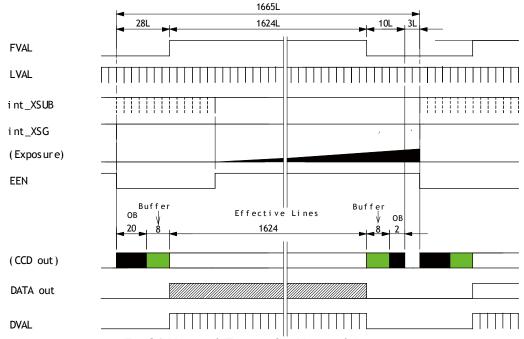



Fig. 26 Vertical Timing for Vertical Binning



### 8.5 Operation Modes

This camera can operate in 5 primary modes.

Continuous Mode
 Edge Pre-select Mode (EPS)
 Pre-selected exposure.

3. Pulse Width Control Mode (PWC)
 4. Sequence Trigger (EPS)
 5. EPS Delayed Readout Trigger
 6. PWC Delayed Readout Trigger
 Pulse width controlled exposure (EPS)
 Pre-selected exposure (EPS)
 Pulse width controlled exposure)

### 8.5.1 Continuous operation

For applications not requiring asynchronous external triggering, this mode should be used.

For timing details, refer to fig. 21. through fig. 26.

To use this mode:

Set function: Trigger mode Continuous

Scanning Full, Partial scanning
Vertical binning On/Off (AM-1600GE only)

Shutter mode Programmable, Exposure Time Abs, Auto shutter

Programmable exposure 3 to 3327 L

### 8.5.2 Edge Pre-select Trigger Mode (EPS)

An external trigger pulse initiates the capture, and the exposure time (accumulation time) is the fixed shutter speed set by registers. The accumulation can be LVAL a-synchronous only. The resulting video signal will start to be read out after the selected shutter time.

For timing details, refer to fig. 21. through fig. 26, Fig. 27.

To use this mode:

Set function: Trigger mode EPS

Scanning Full, Partial

Vertical binning ON / OFF (AM-1600GE only)

Shutter mode Programmable, Exposure Time Abs, Auto

Programmable exposure 3L to 3327 L

Other functions and settings

Input: External trigger GigE interface or 12-pin Hirose

### Important notes on using this mode

- Trigger pulse >1 LVAL to <1 FVAL
- The minimum trigger interval is (3327L + Exposure time ).

### LVAL\_async timing

### EPS LVAL\_Async

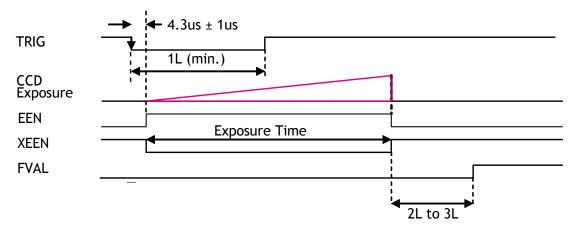



Fig. 27 Edge Pre-select LVAL async Timing



### 8.5.3 Pulse Width Control Trigger Mode (PWC)

In this mode the accumulation time is equal to the trigger pulse width. Here it is possible to have a long time exposure. The maximum recommended time is <2 seconds however, depending on your application, slightly longer exposure may still produce an acceptable signal-to-noise ratio.

The accumulation can be LVAL asynchronous only.

The resulting video signal will start to be read out after the trigger rising edge.

For timing details, refer to fig. 21. through fig. 26, fig. 28.

To use this mode:

Set function: Trigger mode PWC

Scanning Full, Partial

Vertical binning ON / OFF(AM-1600GE only)

Other functions and settings

Input: External trigger GigE interface or 12-pin Hirose

### Important notes on using this mode

■ Trigger pulse width >1LVAL to <2 seconds

■ The minimum trigger interval is (3331L + Exposure time).

### LVAL\_async timing

# PWC LVAL Async

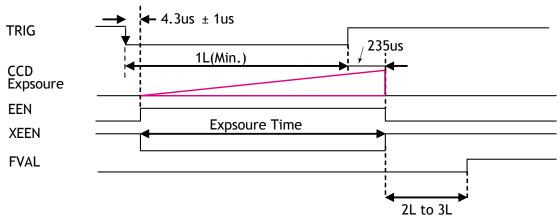
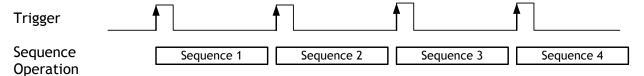




Fig.28 Pulse Width control LVAL a-sync

### 8.5.4 Sequence Trigger Mode (EPS)

This mode allows the user to define a preset sequence up to 10 images, each with its own ROI, Shutter and Gain values. As each trigger input is received, the image data with the preset sequence is output as described below.



Signals added to a trigger can be selected by 0xB060 Camera Trigger Selector in the register map via GPIO. The camera will function on the rising edge of the trigger and Negative or Positive should be determined accordingly.

The following default settings can be modified by the user to define a sequence.

|    |       | R      | OI     |        | ·       | •    | Repeat       |
|----|-------|--------|--------|--------|---------|------|--------------|
| ID | Width | Height | Offset | Offset | Shutter | Gain | number for   |
|    | Width | Height | Χ      | Υ      |         |      | each ID 1-50 |
| 1  | 4872  | 3248   | 0      | 0      | 3327    | 0    | 1            |
| 2  | 4872  | 3248   | 0      | 0      | 3327    | 0    | 1            |
| 3  | 4872  | 3248   | 0      | 0      | 3327    | 0    | 1            |
| 4  | 4872  | 3248   | 0      | 0      | 3327    | 0    | 1            |
| 5  | 4872  | 3248   | 0      | 0      | 3327    | 0    | 1            |
| 6  | 4872  | 3248   | 0      | 0      | 3327    | 0    | 1            |
| 7  | 4872  | 3248   | 0      | 0      | 3327    | 0    | 1            |
| 8  | 4872  | 3248   | 0      | 0      | 3327    | 0    | 1            |
| 9  | 4872  | 3248   | 0      | 0      | 3327    | 0    | 1            |
| 10 | 4872  | 3248   | 0      | 0      | 3327    | 0    | 1            |

The following registers are used to configure the sequence.

| 0xC0F4 | Sequence Repetitions (Number of Repetitions) |
|--------|----------------------------------------------|
| 0xC0F8 | Sequence Ending Position (Ending Position)   |
| 0xA30C | Sequence Reset Command (1 only)              |
| 0xB060 | Selection for camera trigger 0               |

0xA040 Trigger mode selection and 0x09 for Sequential EPS mode

### Example of settings

Setting: Repeat 5 times from ID 1 through ID 8

0xC0F4 Set to 0x05 0xC0F8 Set to 0x08 0xB060 For instance, 12p #6 for Optical IN 1 Sequential PS (9) 0xA040

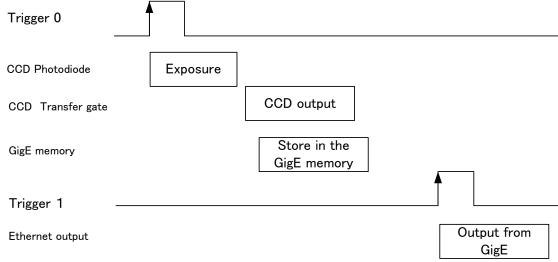
0xA3F0 Set this for start

Set Normal Mode (0) for stop 0xA040

Please refer to the detailed register description on Camera Register Map which is included in the SDK.



The following table shows the minimum trigger interval in synchronous accumulation mode. As EPS sequential trigger mode works only in LVAL asynchronous mode, the exposure time is added to the table below. It is necessary to input the trigger signal so that the timing should be LVAL asynchronous.


| Full Scan | 1/2 Partial | 1/4 Partial | 1/2 V Binning |
|-----------|-------------|-------------|---------------|
| 340 ms    | 185 ms      | 110 ms      | 180 ms        |

- ◆ The conditions for this table are that shutter speed should be set the same for all IDs in the sequence. If the shutter speed is different, the difference of exposure time should be added.
- ♦ It is recommended to set the exposure time in the order from the shortest to the longer one.
- ◆ The above table shows the interval at PE=3(minimum). When the exposure is longer than PE=3, the interval is (Value in the table 3) + Exposure lines (PE value).
- ♦ Do not input the trigger just after the sequence is reset. It requires at least 500ms delay.
- ♦ ROI can be set by 24 pixels unit in horizontal way. In vertical way, 1 line for AM-1600GE and 2lines for AB-1600GE can be set for ROI.

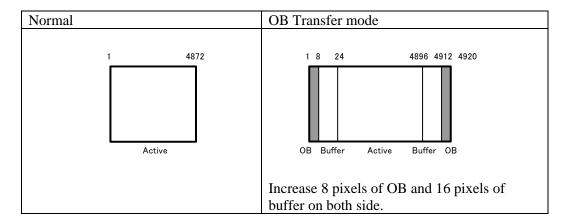
#### 8.5.5 Delayed Readout Mode (EPS, PWC)

This mode can be used to delay the transmission of a captured image. When several cameras are triggered simultaneously and connected to the same GigE interface, it allows the cameras to be read out in sequence, preventing congestion.

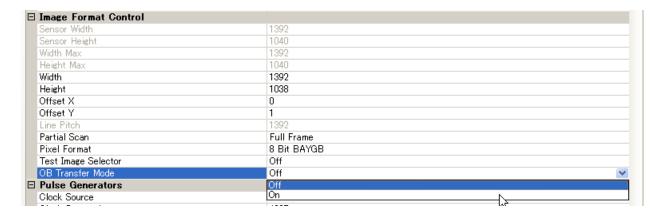
The image data is not transmitted directly by the trigger 0 and it is stored in the memory located at Ethernet Interface. By the falling edge of the soft trigger 1, the image data is output.



#### Example of setting


0xA040 EPS Delayed Readout (0x17)

0xB060 Trigger 0 select, e.g. 0x04 OPT IN 1 0xB-064 Trigger 1 select, e.g. 0x05 OPT IN 2

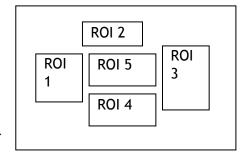

For the details of Registers, please refer to the Camera Register Map included in the SDK.

### 8.5.6 Optical Black transfer Mode

It is possible for the user to decide whether the optical black (OB) portion of the image will be transferred or not. The optical black part can be used for black reference in the application software. Setting register 0xA41C turns the optical black transfer ON or OFF. The default condition is OFF.



Note: The menu for ON or OFF of OB transfer mode is found on the Image Format Control of JAI SDK Camera Control Tool.




#### 8.5.7 Multi ROI mode (Multi Region of Interest)

In this mode, at maximum of 5 ROIs located on one image can be output by one trigger input. By using this mode, the data stream can be smaller.

Each ROI can be overlapped. However, if the total size of the accumulated 5 ROIs is larger than that of 1 frame, the frame rate might be decreased.

It is recommended to determine the size of each ROI after calculating the total size.





# 8.6 Operation Mode and Functions matrix

| ID (Value)<br>Note 1 | Mode                               | Shutter<br>Program./<br>Auto Exposure<br>(note2) | Vertical<br>Binning<br>(Note 3) | Partial<br>Scanning | Multi<br>ROI | LVAL Sync/<br>Async |
|----------------------|------------------------------------|--------------------------------------------------|---------------------------------|---------------------|--------------|---------------------|
| 0x00                 | Continuous                         | Yes                                              | Yes                             | Yes                 | No           |                     |
| 0x01                 | Edge Pre-select<br>(EPS)           | Yes                                              | Yes                             | Yes                 | Yes          | Async               |
| 0x02                 | Pulse Width<br>Control<br>(PWC)    | Not applicable                                   | Yes                             | Yes                 | Yes          | Async               |
| 0x09                 | Sequential Pre-<br>select<br>(EPS) | Yes                                              | Yes                             | Yes                 | No           | Async               |
| 0x11                 | EPS<br>Delayed Readout             | Yes                                              | Yes                             | Yes                 | Yes          | Async               |
| 0x12                 | PWC<br>Delayed Readout             | Yes                                              | Yes                             | Yes                 | Yes          | Async               |

Note 1: Write ID in register address 0xA040 in order to set trigger mode.

Note 2: Auto exposure is available only in continuous mode.

Note 3: Vertical Binning is available only for AM-1600GE.

# 9. Register Map

The following table provides detailed information for the hardware registers used for controlling the camera and obtaining information on the status of the camera. The content of this register map is also found in the XML file, as stipulated by the GenlCam standard.

Generic Registers:

| Address | Function                        | Read/<br>Write | Size | Value / Range<br>of value           | Description                                                                                               | Default<br>value |
|---------|---------------------------------|----------------|------|-------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------|
|         |                                 | _              |      | Major vector                        | Version of the GigE Standard to                                                                           | 0001             |
| 0x0000  | Version                         | R              | 4    | Minor vector                        | which the device is compliant.                                                                            | 0000             |
|         |                                 |                |      | Bit0:Endianness                     | 0:Little endian 1:Big endian                                                                              | 1                |
| 0x0004  | Is Big Endian                   | R              | 4    | Bit24-31:<br>Character set<br>index | 1:UTF-8                                                                                                   | 1                |
| 0x0008  | Device MAC address (high)       | R              | 4    |                                     | Upper 4 bytes of the MAC address                                                                          |                  |
|         |                                 |                |      | Bit 31: persistent                  | Bits can be OR-ed. All other                                                                              | 1                |
| 0x0010  | IP                              | R              | 4    | Bit 30: DHCP<br>Bit 29: LLA         | bits are reserved and set to 0. DHCP and LLA bits must be on.                                             | 1                |
|         |                                 |                |      | D:: 24                              |                                                                                                           | 0                |
| 0x0014  | Current IP                      | R              | 4    | Bit 31: persistent<br>Bit 30: DHCP  | Bits can be OR-ed. LLA is always activated and is read                                                    | 1                |
| 0,0011  | Configuration                   | W              |      | Bit 29: LLA                         | only.                                                                                                     | 1                |
| 0x0024  | Current IP address              | R              | 4    |                                     |                                                                                                           |                  |
| 0x0034  | Current subnet mask             | R              | 4    |                                     |                                                                                                           |                  |
| 0x0044  | Current default gateway         | R              | 4    |                                     |                                                                                                           |                  |
| 0x0048  | Manufacturer's name             | R              | 32   |                                     | e.g. JAI                                                                                                  |                  |
| 0x0068  | Device Model name               | R              | 32   |                                     | e.g. AM-1600GE                                                                                            |                  |
| 0x0088  | Device version                  | R              | 32   |                                     |                                                                                                           |                  |
| 0x00A8  | Device<br>Manufacturer info     | R              | 48   |                                     | Provides extended manufacturer information about the device.                                              |                  |
| 0x00D8  | Device ID                       | R              | 16   |                                     | Camera serial number                                                                                      |                  |
| 0x00E8  | Device User ID                  | R<br>W         | 16   |                                     | User assignable string                                                                                    |                  |
| 0x0200  | First choice of URL for XML     | R              | 512  |                                     | File extension .XML indicates uncompressed text file. File extension .ZIP indicates compressed using ZIP. |                  |
| 0x0400  | Second choice of<br>URL for XML | R              | 512  |                                     |                                                                                                           |                  |
| 0x0600  | Number of interfaces            | R              | 4    |                                     | Indicates the number of physical network interfaces on this device.                                       | 1                |
| 0x064C  | Persistent IP address           | R<br>W         | 4    |                                     | Valid if Persistent IP is enabled                                                                         | 0xC0A86<br>401   |
| 0x065C  | Persistent subnet mask          | R<br>W         | 4    |                                     | Valid if Persistent IP is enabled                                                                         | 0xFFFFFF<br>00   |



| Address | Function                                            | Read/<br>Write | Size | Value / Range<br>of value                                                                                                                                                       | Description                                                                                                              | Default<br>value |
|---------|-----------------------------------------------------|----------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------|
| 0x066C  | Persistent gateway                                  | R<br>W         | 4    |                                                                                                                                                                                 | Valid if Persistent IP is enabled                                                                                        | 0x000000<br>00   |
| 0x0900  | Messaging channel count                             | R              | 4    | This camera has 1                                                                                                                                                               | number of available message channel                                                                                      | 1                |
| 0x0904  | Stream channel count                                | R              | 4    | This camera only has 1                                                                                                                                                          | number of available stream channel                                                                                       | 1                |
| 0x0934  | GVCP capability                                     | R              | 4    | Bit 0:User defined<br>name<br>Bit 1:serial No.<br>Bit 2 ~26:reserved<br>Bit 27:EVENTDATA<br>Bit 28:EVENT<br>Bit29:ACKETRESEN<br>D<br>Bit 30:WRITEMEM<br>Bit 31:multiple<br>read | This is a capability register indicating which one of the non-mandatory GVCP commands are supported by this device.      |                  |
| 0x0938  | Heartbeat timeout                                   | R<br>W         | 4    | 0b to 4294967295                                                                                                                                                                | In milliseconds. Internally, the heartbeat is rounded according to the clock used for heartbeat.                         | 3000 or<br>15000 |
| 0x093C  | Timestamp tick<br>frequency (High)                  | R              | 4    | Timestamp tick frequency is 0 if timestamp is not supported.                                                                                                                    | 64-bit value indicating the number of timestamp clock ticks in 1 second. This register holds the most significant bytes. | 0                |
| 0x0940  | Timestamp tick frequency (Low)                      | R              | 4    |                                                                                                                                                                                 | This register holds the least significant bytes.                                                                         | 6250000<br>0     |
| 0x0944  | Timestamp control<br>Reset                          | W              | 4    | Bit 0: Reset Bit 1:latch current timestamp                                                                                                                                      | Used to latch the current timestamp value. No need to clear to 0.                                                        |                  |
| 0x0948  | Timestamp (High)                                    | R              | 4    |                                                                                                                                                                                 | Latched value of the timestamp (most significant bytes)                                                                  |                  |
| 0x094C  | Timestamp (Low)                                     | R              | 4    |                                                                                                                                                                                 | Latched value of the timestamp (least significant bytes)                                                                 |                  |
| 0x0a00  | CCP(Control<br>Channel Privilege)                   | R<br>W         | 4    | 0:Disconnect<br>1:Exclusive<br>2:Control<br>3:Exclusive Control                                                                                                                 | control channel privilege<br>register                                                                                    | 0                |
| 0x0b00  | MCP(Message<br>Channel Port)                        | R<br>W         | 4    |                                                                                                                                                                                 | message channel port register                                                                                            | 0                |
| 0x0b10  | MCDA(Message<br>Channel Destination<br>Address)     | R<br>W         | 4    | Not specified                                                                                                                                                                   | message channel destination address register                                                                             |                  |
| 0x0b14  | MCTT(Message<br>Channel<br>Transmission<br>Timeout) | R<br>W         | 4    |                                                                                                                                                                                 | message channel transfer<br>timeout: ms                                                                                  | 300              |
| 0x0b18  | MCRC(Message<br>Channel Retry<br>count)             | R<br>W         | 4    |                                                                                                                                                                                 | message channel retry count                                                                                              | 2                |
| 0x0d00  | SCP(Stream<br>Channel Port)                         | R<br>W         | 4    |                                                                                                                                                                                 | primary stream port register                                                                                             |                  |
| 0x0d04  | SCPS(Stream<br>Channel Packet<br>Size)0             | R<br>W         | 4    | 1476 to 16020                                                                                                                                                                   | primary stream channel packet<br>size register/ packet size<br>includes IP, UDP&GVSP Header                              | 1476             |

| Address | Function                                       | Read/<br>Write |   | Value / Range<br>of value | Description                                            | Default<br>value |
|---------|------------------------------------------------|----------------|---|---------------------------|--------------------------------------------------------|------------------|
| 0x0d08  | SCPD(Stream<br>Channel Packet<br>Delay)        | R<br>W         | 4 | 0 to 125000               | primary stream channel packet<br>delay register        | 0                |
| 0x0d18  | SCDA(Stream<br>Channel Destination<br>Address) | R<br>W         | 4 |                           | primary stream channel<br>destination address register |                  |
| 0xA6DC  | FPGA version                                   | R              | 4 | YYMMDDVR                  |                                                        |                  |

Standard camera functions registers:

| Address | Function                            | Read/<br>Write | Size | Value / Range<br>of value                                                                                                                    | Description                                                                                                         | Default<br>value |
|---------|-------------------------------------|----------------|------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------|
| 0xA000  | Shutter mode                        | R<br>W         | 4    | 1= Prog. exposure<br>2= Exp.TimeAbs<br>3=Auto exposure                                                                                       | Sets exposure time for image capture.                                                                               | 0                |
| 0xA008  | Exposure time in RAW format         | R<br>W         | 4    | 3 to 3327(OFF)                                                                                                                               | Flexible setting of exposure time ranging from 296 µs to 328 ms using the LVAL period (L) as increment. 1L is 32us. | 3327             |
| 0xA018  | Exposure TimeAbs<br>( single)       | R<br>W         | 4    | 296 to<br>328264( OFF)                                                                                                                       | Actual exposure time in microseconds, µs. The camera will round value off to match LVAL increments.                 | 328264           |
| 0xA030  | Auto Exposure<br>Value              | R<br>O         |      |                                                                                                                                              | Auto shutter value                                                                                                  |                  |
| 0xA040  | Exposure Mode                       | R<br>W         | 4    | 0x00=Continuous<br>0x01=Edge pre-<br>select<br>0x02=Pulse width<br>control<br>0x09=Sequential<br>EPS<br>0x17=Delayed EPS<br>0x18=Delayed PWC | Trigger mode                                                                                                        | 0                |
| 0xA080  | Partial Scan<br>(Vertical)          | R<br>W         | 4    | 0=Full Frame<br>2=1/2 Partial<br>3=1/4 Partial<br>15= Variable                                                                               |                                                                                                                     | 0                |
| 0xA084  | Binning vertical                    | R<br>W         | 4    | 1=Binning OFF<br>2=1/2 V Binning                                                                                                             | AM-1600GE only                                                                                                      | 1                |
| 0xA088  | Variable Partial scan start line    | R<br>W         | 4    | 0 to 2447                                                                                                                                    | On variable mode                                                                                                    | 2                |
| 0x08C   | Variable Partial scan Num. of lines | R<br>W         | 4    | 800 to 3248                                                                                                                                  | On variable mode                                                                                                    | 2056             |
| 0xA09C  | Channel level adjust                | R<br>W         | 4    | 0 to 65535                                                                                                                                   | R ch Digital Fine gain                                                                                              | 8192             |
| 0xA0A0  | Pixel Gain Gr                       | R<br>W         | 4    | 0 to 65535                                                                                                                                   | Mono : Digital ( All)<br>Bayer : Digital Gr                                                                         | 8192             |
| 0xA0A4  | Pixel Gain Gb                       | R<br>W         | 4    | 0 to 65535                                                                                                                                   | Digital Gb                                                                                                          | 8192             |
| 0xA0A8  | Pixel Gain R                        | R<br>W         | 4    | 0 to 65535                                                                                                                                   | Digital R                                                                                                           | 8192             |



| Address | Function                         | Read/<br>Write | Size | Value / Range of value                                                                                                                                     | Description               | Default<br>value |
|---------|----------------------------------|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|
| 0xA0AC  | Pixel Gain B                     | R<br>W         | 4    | 0 to 65535                                                                                                                                                 | Digital B                 | 8192             |
| 0xA0B0  | AGC                              | R<br>W         | 4    | 0=0FF<br>1=0N                                                                                                                                              |                           | 0                |
| 0xA0B4  | AGC/Auto shutter reference       | R<br>W         | 4    | 0 to 8191                                                                                                                                                  |                           | 0                |
| 0xA0B8  | Gain Auto Balance once           | W              | 4    | 0= execute                                                                                                                                                 |                           | 0 only           |
| 0xA0BC  | Black Level Auto<br>Balance once | W              | 4    | 0= execute                                                                                                                                                 |                           | 0 only           |
| 0xA0C0  | Balance White Auto               | R<br>W         | 4    | 0=Manual/One-<br>push                                                                                                                                      | AB-1600GE only            | 0                |
| 0xA0C4  | Manual Gain Level                | R<br>W         | 4    | 0 to 1535                                                                                                                                                  | -3dB to +12dB             | 224              |
| 0xA0C8  | Auto Gain Value                  | R<br>O         | 4    |                                                                                                                                                            | Auto gain value on AGC=ON |                  |
| 0xA0D0  | One push Auto<br>white balance   | W              | 4    | 0= execute                                                                                                                                                 |                           | 0 only           |
| 0xA0D4  | AWB area                         | R<br>W         | 4    | 0=All pixels<br>1=Middle band<br>pixels<br>3=Centre pixels                                                                                                 |                           | 0                |
| 0xA0D8  | Auto Balance Status              | R              | 4    | 0=Complete 1=Too bright 2=Too dark 3=Time error 4=Busy 5=Limit 6=Trigger is not set at normal                                                              |                           |                  |
| 0xA0E0  | User Black level                 | R<br>W         | 4    | 0 to 255                                                                                                                                                   |                           | 128              |
| 0xA11C  | Shading Correction               | R<br>W         | 4    | 0=Off 1=Flat_Offset 3=Flat_Offset_Gain 9=Calibration dark shading 10=Calibration bright shading Bit27=Save shading Bit26=Load shading Bit25=Verify shading |                           | 0                |
| 0xA128  | Blemish reduction                | R<br>W         | 4    | 0=OFF<br>1=ON<br>Bit30=Calibration<br>Dark blemish<br>Bit29=Calibration<br>bright blemish<br>Bit28=Save<br>Bit276=Load<br>Bit26=Verify                     |                           | 0                |

| Address  | Function                                | Read/<br>Write | Size | Value / Range<br>of value                                                                                                                                                                       | Description                                                                        | Default<br>value |
|----------|-----------------------------------------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------|
| 0xA13C   | Test Stream<br>(Jumbo Packet<br>Check)  | R<br>W         | 4    | 0=OFF<br>6=Moving Ramp<br>scale                                                                                                                                                                 |                                                                                    | 0                |
| 0xA148   | Blemish calibration status and progress | R<br>W         | 4    | 31-24 bit: 0=completed 1=Too bright 2=Too dark 3=Time out error 4=Busy 5=Limt 6=Trigger is not set as Normal mode 23-16 bit: Progress indication (0% to 100%) 15 - 0 bit: Error count of verify |                                                                                    | 0xA148           |
| 0xA14C   | Shading calibration status and progress | R<br>W         | 4    | 31-24 bit: 0=completed 1=Too bright 2=Too dark 3=Time out error 4=Busy 5=Limt 6=Trigger is not set as Normal mode 23-16 bit: Progress indication (0% to 100%) 15 - 0 bit: Error count of verify |                                                                                    |                  |
| 0xA1FC   | Temperature                             | R              | 4    | 0.0625°C step,<br>Specified range:<br>-40 °C                                                                                                                                                    | -55 ℃ to 150 ℃                                                                     |                  |
| 0xA200   | LUT Enable                              | R<br>W         | 4    | 0:OFF 1:ON                                                                                                                                                                                      |                                                                                    | 0                |
| 0xA300   | User set save                           | w              | 4    | 1=User area1                                                                                                                                                                                    | Allows use to save all camera settings. Last used area number becomes new default. | 1                |
| 0xA304   | User set Load                           | W              | 4    | 0=Factory area<br>1=User area1                                                                                                                                                                  | Allow the user to recall all camera settings.                                      | 0                |
| 0xA308   | Current User Set<br>Selector            | R              | 4    | 0=Factory area<br>1=User area 1                                                                                                                                                                 |                                                                                    | 0                |
| 0xA30C   | Save Sequence settings                  | W              | 4    | 1 only                                                                                                                                                                                          |                                                                                    | 1                |
| Sequence | function registers                      |                | -    |                                                                                                                                                                                                 |                                                                                    |                  |
| 0xC000   | Sequence Shutter 1                      | R<br>W         | 4    | 3 to 3327                                                                                                                                                                                       | Pre-program 1 <sup>st</sup> shutter value                                          | 3327             |
| 0xC004   | Sequence Shutter 2                      | R<br>W         | 4    | 3 to 3327                                                                                                                                                                                       | Pre-program 2 <sup>nd</sup> shutter value                                          | 3327             |



| Address | Function                  | Read/<br>Write | Size | Value / Range<br>of value | Description                                | Default<br>value |
|---------|---------------------------|----------------|------|---------------------------|--------------------------------------------|------------------|
| 0xC008  | Sequence Shutter 3        | R<br>W         | 4    | 3 to 3327                 | Pre-program 3 <sup>rd</sup> shutter value  | 3327             |
| 0xC00C  | Sequence Shutter 4        | R<br>W         | 4    | 3 to 3327                 | Pre-program 4 <sup>th</sup> shutter value  | 3327             |
| 0xC010  | Sequence Shutter 5        | R<br>W         | 4    | 3 to 3327                 | Pre-program 5 <sup>th</sup> shutter value  | 3327             |
| 0xC014  | Sequence Shutter 6        | R<br>W         | 4    | 3 to 3327                 | Pre-program 6 <sup>th</sup> shutter value  | 3327             |
| 0xC018  | Sequence Shutter 7        | R<br>W         | 4    | 3 to 3327                 | Pre-program 7 <sup>th</sup> shutter value  | 3327             |
| 0xC01C  | Sequence Shutter 8        | R<br>W         | 4    | 3 to 3327                 | Pre-program 8 <sup>th</sup> shutter value  | 3327             |
| 0xC020  | Sequence Shutter 9        | R<br>W         | 4    | 3 to 3327                 | Pre-program 9 <sup>th</sup> shutter value  | 3327             |
| 0xC024  | Sequence Shutter<br>10    | R<br>W         | 4    | 3 to 3327                 | Pre-program 10 <sup>th</sup> shutter value | 3327             |
| 0xC078  | Sequence Gain 1           | R<br>W         | 4    | -224 to 1311              | Pre-program 1 <sup>st</sup> Gain value     | 0                |
| 0xC07C  | Sequence Gain 2           | R<br>W         | 4    | -224 to 1311              | Pre-program 2 <sup>nd</sup> Gain value     | 0                |
| 0xC080  | Sequence Gain 3           | R<br>W         | 4    | -224 to 1311              | Pre-program 3 <sup>rd</sup> Gain value     | 0                |
| 0xC084  | Sequence Gain 4           | R<br>W         | 4    | -224 to 1311              | Pre-program 4 <sup>th</sup> Gain value     | 0                |
| 0xC088  | Sequence Gain 5           | R<br>W         | 4    | -224 to 1311              | Pre-program 5 <sup>th</sup> Gain value     | 0                |
| 0xC08C  | Sequence Gain 6           | R<br>W         | 4    | -224 to 1311              | Pre-program 6 <sup>th</sup> Gain value     | 0                |
| 0xC090  | Sequence Gain 7           | R<br>W         | 4    | -224 to 1311              | Pre-program 7 <sup>th</sup> Gain value     | 0                |
| 0xC094  | Sequence Gain 8           | R<br>W         | 4    | -224 to 1311              | Pre-program 8 <sup>th</sup> Gain value     | 0                |
| 0xC098  | Sequence Gain 9           | R<br>W         | 4    | -224 to 1311              | Pre-program 9 <sup>th</sup> Gain value     | 0                |
| 0xC09C  | Sequence Gain 10          | R<br>W         | 4    | -224 to 1311              | Pre-program 10 <sup>th</sup> Gain value    | 0                |
| 0xC0F0  | Reset Sequence settings   | W              | 4    | 1 only                    | Sequence Reset                             | 1                |
| 0xC0F4  | Sequence repetition count | R<br>W         | 4    | 0 to 255                  | Number of repetition                       | 0                |
| 0xC0F8  | last sequence             | R<br>W         | 4    | 1 to 10                   | Ending position                            | 1                |
| 0xC0FC  | Sequence ROI<br>size- X1  | R<br>W         | 4    | 24 to 4872                |                                            | Width<br>max     |
| 0xC100  | Sequence ROI<br>Size- X2  | R<br>W         | 4    | 24 to 4872                |                                            | Width<br>max     |
| 0xC104  | Sequence ROI<br>Size- X3  | R<br>W         | 4    | 24 to 4872                |                                            | Width<br>max     |
| 0xC108  | Sequence ROI<br>Size- X 4 | R<br>W         | 4    | 24 to 4872                |                                            | Width<br>max     |
| 0xC10C  | Sequence ROI<br>size- X5  | R<br>W         | 4    | 24 to 4872                |                                            | Width<br>max     |
| 0xC110  | Sequence ROI<br>Size- X 6 | R              | 4    | 24 to 4872                |                                            | Width<br>max     |

| Address | Function                   | Read/<br>Write | Size | Value / Range<br>of value | Description | Default<br>value |
|---------|----------------------------|----------------|------|---------------------------|-------------|------------------|
| 0xC114  | Sequence ROI<br>size- X7   |                | 4    | 24 to 4872                |             | Width<br>max     |
| 0xC118  | Sequence ROI<br>Size- X8   | R 4            | 4    | 24 to 4872                |             | Width<br>max     |
| 0xC11C  | Sequence ROI<br>size- X9   | R 4            | 4    | 24 to 4872                |             | Width<br>max     |
| 0xC120  | Sequence ROI<br>Size- X10  | R 4            | 4    | 24 to 4872                |             | Width<br>max     |
| 0xC124  | Sequence ROI<br>Size-Y1    |                | 4    | 8 to 3248                 |             | Height<br>Max    |
| 0xC128  | Sequence ROI<br>Size-Y2    |                | 4    | 8 to 3248                 |             | Height<br>Max    |
| 0xC12C  | Sequence ROI<br>Size-Y3    |                | 4    | 8 to 3248                 |             | Height<br>Max    |
| 0xC130  | Sequence ROI<br>Size-Y4    |                | 4    | 8 to 3248                 |             | Height<br>Max    |
| 0xC134  | Sequence ROI<br>Size-Y5    | R V            | 4    | 8 to 3248                 |             | Height<br>Max    |
| 0xC138  | Sequence ROI<br>Size-Y6    | R 4            | 4    | 8 to 3248                 |             | Height<br>Max    |
| 0xC13C  | Sequence ROI<br>Size-Y7    | R V            | 4    | 8 to 3248                 |             | Height<br>Max    |
| 0xC140  | Sequence ROI<br>Size-Y8    | R V            | 4    | 8 to 3248                 |             | Height<br>Max    |
| 0xC144  | Sequence ROI<br>Size-Y9    | R 4            | 4    | 8 to 3248                 |             | Height<br>Max    |
| 0xC148  | Sequence ROI<br>Size-Y10   | R V            | 4    | 8 to 3248                 |             | Height<br>Max    |
| 0xC14C  | Sequence ROI<br>Offset-X1  | R 4            | 4    | 0 to 4864                 |             | 0                |
| 0xC150  | Sequence ROI<br>Offset-X2  | R 4            | 4    | 0 to 4864                 |             | 0                |
| 0xC154  | Sequence ROI<br>Offset-X3  | R 4            | 4    | 0 to 4864                 |             | 0                |
| 0XC158  | Sequence ROI<br>Offset-X4  | R 4            | 4    | 0 to 4864                 |             | 0                |
| 0xC15C  | Sequence ROI<br>Offset-X5  | R /<br>/<br>W  | 4    | 0 to 4864                 |             | 0                |
| 0xC160  | Sequence ROI<br>Offset-X6  | R 4            | 4    | 0 to 4864                 |             | 0                |
| 0xC164  | Sequence ROI<br>Offset-X7  | R 4            | 4    | 0 to 4864                 |             | 0                |
| 0xC168  | Sequence ROI<br>Offset-X8  | R 4            | 4    | 0 to 4864                 |             | 0                |
| 0xC16C  | Sequence ROI<br>Offset-X9  | R 4            | 4    | 0 to 4864                 |             | 0                |
| 0xC170  | Sequence ROI<br>Offset-X10 | R V            | 4    | 0 to 4864                 |             | 0                |
| 0xC174  | Sequence ROI<br>Offset-Y1  | W              | 4    | 0 to 3240                 |             | 0                |
| 0xC178  | Sequence ROI<br>Offset-Y2  | R V            | 4    | 0 to 3240                 |             | 0                |



| Address | Function                                  | Read/<br>Write | S | Value / Range<br>of value | Description | Default<br>value |
|---------|-------------------------------------------|----------------|---|---------------------------|-------------|------------------|
| 0xC17C  | Sequence ROI<br>Offset-Y3                 | R<br>W         | 4 | 0 to 3240                 |             | 0                |
| 0xC180  | Sequence ROI<br>Offset-Y4                 | R<br>W         | 4 | 0 to 3240                 |             | 0                |
| 0xC184  | Sequence ROI<br>Offset-Y5                 | R<br>W         | 4 | 0 to 3240                 |             | 0                |
| 0xC188  | Sequence ROI<br>Offset-Y6                 | R<br>W         | 4 | 0 to 3240                 |             | 0                |
| 0xC18C  | Sequence ROI<br>Offset-Y7                 | R<br>W         | 4 | 0 to 3240                 |             | 0                |
| 0xC190  | Sequence ROI<br>Offset-Y8                 | R<br>W         | 4 | 0 to 3240                 |             | 0                |
| 0xC194  | Sequence ROI<br>Offset-Y9                 | R<br>W         | 4 | 0 to 3240                 |             | 0                |
| 0xC198  | Sequence ROI<br>Offset-Y10                | R<br>W         | 4 | 0 to 3240                 |             | 0                |
| 0xC19C  | Sequence ROI<br>Internal Repetition<br>1  | R<br>W         | 4 | 1 to 50                   |             | 0                |
| 0xC1A0  | Sequence ROI<br>Internal Repetition<br>2  | R<br>W         | 4 | 0 to 255                  |             | 0                |
| 0xC1A4  | Sequence ROI<br>Internal Repetition<br>3  | R<br>W         | 4 | 0 to 255                  |             | 0                |
| 0xC1A8  | Sequence ROI<br>Internal Repetition<br>4  | R<br>W         | 4 | 0 to 255                  |             | 0                |
| 0xC1AC  | Sequence ROI<br>Internal Repetition<br>5  | R<br>W         | 4 | 0 to 255                  |             | 0                |
| 0xC1B0  | Sequence ROI<br>Internal Repetition<br>6  | R<br>W         | 4 | 0 to 255                  |             | 0                |
| 0xC1B4  | Sequence ROI<br>Internal Repetition<br>7  | R<br>W         | 4 | 0 to 255                  |             | 0                |
| 0xC1B8  | Sequence ROI<br>Internal Repetition<br>8  | R<br>W         | 4 | 0 to 255                  |             | 0                |
| 0xC1BC  | Sequence ROI<br>Internal Repetition<br>9  | R<br>W         | 4 | 0 to 255                  |             | 0                |
| 0xC1C0  | Sequence ROI<br>Internal Repetition<br>10 | R<br>W         | 4 | 0 to 255                  |             | 0                |

GigE Vision streaming related registers:

| Address | Function                 | Read/<br>Write | Size | Value / Range<br>of value | Description                                      | Default<br>value |
|---------|--------------------------|----------------|------|---------------------------|--------------------------------------------------|------------------|
| 0xA400  | Horizontal Image<br>Size | R              | 4    |                           |                                                  | 4872             |
| 0xA404  | Vertical Image Size      | R              | 4    |                           | return proper value when normal, V-bin & partial | 3248             |

| Address | Function                   | Read/<br>Write | Size | Value / Range<br>of value                                                                                                              | Description                                                              | Default<br>value                                            |
|---------|----------------------------|----------------|------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|
| 0xA410  | Video Pixel Format<br>Type | R<br>W         | 4    | AM-1600GE<br>0x01080001<br>0x010C0004<br>0x01100003<br>0x010C0006<br>0x01100005<br>AB-1600GE<br>0x01080008<br>0x0110000C<br>0x01100010 | Mono8 Mono 10 Packed Mono10 Mono12 Packed Mono12 BAYGR8B BAYGR10 BAYGR12 | Mono8<br>for AM-<br>1600GE /<br>BAYRG8<br>for AB-<br>1600GE |
| 0xA414  | Frame Skipping<br>Ratio    | R<br>W         | 4    | 0=3.04 fps<br>1=1.52 fps<br>2=0.76 fps<br>3=0.38 fps                                                                                   |                                                                          | 0                                                           |
| 0xA418  | Payload Length register    | R              | 4    |                                                                                                                                        | Number of bytes in a frame                                               |                                                             |
| 0xA41C  | OB Trans Mode              | R<br>W         | 4    | 0= OFF<br>1= ON                                                                                                                        |                                                                          | 0                                                           |
| 0xA500  | ROI Mode                   | R<br>W         | 4    | 1 to 5                                                                                                                                 | ROI End Position 1-5                                                     | 1                                                           |
| 0xA504  | ROI1 Size X                | R<br>W         | 4    | 24 to 4872                                                                                                                             | Width                                                                    | W.Max                                                       |
| 0xA508  | ROI1 Size Y                | R<br>W         | 4    | 8 to 3248                                                                                                                              | Height                                                                   | H.Max                                                       |
| 0xA50C  | ROI1 Offset X              | R<br>W         | 4    | 0 to 4864                                                                                                                              | Horizontal offset                                                        | 0                                                           |
| 0xA510  | ROI1 Offset Y              | R<br>W         | 4    | 0 to 3240                                                                                                                              | Vertical offset                                                          | 0                                                           |
| 0xA514  | ROI2 Size X                | R<br>W         | 4    | 24 to 4872                                                                                                                             | Width 2                                                                  | W.Max                                                       |
| 0xA518  | ROI 2 Size Y               | R<br>W         | 4    | 8 to 3248                                                                                                                              | Height 2                                                                 | H.Max                                                       |
| 0xA51C  | ROI 2 Offset X             | R<br>W         | 4    | 0 to 4864                                                                                                                              | Offset X2                                                                | 0                                                           |
| 0xA520  | ROI 2 Offset Y             | R<br>W         | 4    | 0 to 3240                                                                                                                              | Offset Y2                                                                | 0                                                           |
| 0xA524  | ROI 3 Size X               | R<br>W         | 4    | 24 to 4872                                                                                                                             | Width 3                                                                  | W.Max                                                       |
| 0xA528  | ROI 3 Size Y               | R<br>W         | 4    | 8 to 3248                                                                                                                              | Height 3                                                                 | H.Max                                                       |
| 0xA52C  | ROI 3 Offset X             | R<br>W         | 4    | 0 to 4864                                                                                                                              | Offset X3                                                                | 0                                                           |
| 0xA530  | ROI 3 Offset Y             | R<br>W         | 4    | 0 to 3240                                                                                                                              | Offset Y3                                                                | 0                                                           |
| 0xA534  | ROI 4 Size X               | R<br>W         | 4    | 24 to 4872                                                                                                                             | Width 4                                                                  | W.Max                                                       |
| 0xA538  | ROI 4 Size Y               | R<br>W         | 4    | 8 to 3248                                                                                                                              | Height 4                                                                 | H.Max                                                       |
| 0xA53C  | ROI 4 Offset X             | R<br>W         | 4    | 0 to 4864                                                                                                                              | Offset X4                                                                | 0                                                           |
| 0xA540  | ROI 4 Offset Y             | R<br>W         | 4    | 0 to 3240                                                                                                                              | Offset Y4                                                                | 0                                                           |



| Address   | Function                     | Read/<br>Write | Size | Value / Range<br>of value                                                    | Description                               | Default<br>value |
|-----------|------------------------------|----------------|------|------------------------------------------------------------------------------|-------------------------------------------|------------------|
| 0xA544    | ROI 5 Size X                 | R<br>W         | 4    | 24 to 4872                                                                   | Width 5                                   | W.Max            |
| 0xA548    | ROI 5 Size Y                 | R<br>W         | 4    | 8 to 3248                                                                    | Height 2                                  | H.Max            |
| 0xA54C    | ROI 5 Offset X               | R<br>W         | 4    | 0 to 4864                                                                    | Offset X 5                                | 0                |
| 0xA550    | ROI 5 Offset Y               | R<br>W         | 4    | 0 to 3240                                                                    | Offset Y 5                                | 0                |
| 0xA600    | User Output 0                | R<br>W         | 4    | 31bit=User out o<br>30bit=User out 1<br>29bit=User out 2<br>28bit=User out 3 | Software trigger                          | 0                |
| 0xA604    | Acquisition Control          | R<br>W         | 4    | 0=Stop , 1=Start                                                             |                                           | 0                |
|           |                              |                |      | Bit31:GEV_EVENT_<br>TRIGGER                                                  |                                           | 0                |
|           |                              |                |      | Bit30:GEV_EVENT_<br>START_OF_EXPOSU<br>RE                                    |                                           | 0                |
|           |                              |                |      | Bit29:GEV_EVENT_<br>END_OF_EXPOSURE                                          |                                           | 0                |
|           | 0xA610 Event ON/OFF register |                | 4    | Bit28:GEV_EVENT_<br>START_OF_TRANSF<br>ER                                    |                                           | 0                |
| 0xA610    |                              | R<br>W         |      | Bit27:GEV_EVENT_<br>END_OF_TRANSFER                                          |                                           | 0                |
|           |                              | **             |      | Bit26:GEV_EVENT_<br>TRIGGER ERROR                                            |                                           | 0                |
|           |                              |                |      | Bit25:Line 1<br>Active(TTL out1)                                             |                                           | 0                |
|           |                              |                |      | Bit24:Line 2 Active<br>(TTL out 2)                                           |                                           | 0                |
|           |                              |                |      | Bit23:Line 3<br>Active(TTL out 3)                                            |                                           | 0                |
|           |                              |                |      | Bit22*Line 4 Active<br>(TTLout4)                                             |                                           | 0                |
| 0xA640    | Device Reset                 | w              | 4    | 0=OFF<br>1=Reset                                                             |                                           | 0                |
| GPIO Regi | sters:                       |                |      |                                                                              |                                           | 1                |
| 0xB000    | Counter Clock source         | R<br>W         | 4    | 0x01                                                                         | Pixel Clock                               | 0                |
| 0xB004    | Counter Divide by<br>Value   | R<br>W         | 4    | 0x000<br>0x001<br>0x002                                                      | Bypass<br>Divide by 2<br>Divide by 3      | 0                |
|           |                              |                |      | 0xFFF                                                                        | Divide by 4096                            |                  |
| 0xB008    | Length Counter 0             | R<br>W         | 4    | 0x00001 to<br>0xFFFFF                                                        | Defines the length of the counter         | 1                |
| 0xB00C    | Start point Counter 0        | R<br>W         | 4    | 0x00001 to<br>0xFFFFF                                                        | Defines the starting point of the counter | 0                |
| 0xB010    | Repeat Count 0               | R<br>W         | 4    | 0x00: infinite<br>0x01: 1 time<br> <br>0xFF: 255 times                       | Defines the number of repeats (loops)     | 0                |

| Addres<br>s | Function                         | Read/<br>Write | Size | Value / Range of value                                                                                                                                                                                           | Description                                                                                | Default<br>value |
|-------------|----------------------------------|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|
| 0xB014      | End point Counter 0              | R<br>W         | 4    | 0x00001 to<br>0xFFFFF                                                                                                                                                                                            | Defines the end point of the counter                                                       | 1                |
| 0xB018      | Counter 0 Clear                  | R<br>W         | 4    | 0<br>1<br>2<br>4<br>8                                                                                                                                                                                            | Free Run High Level Clear Low Level Clear Rising Edge Clear Falling Edge Clear             | 0                |
| 0xB01C      | Length Counter 1                 | R<br>W         | 4    | 0x00001 to<br>0xFFFFF                                                                                                                                                                                            | Counter length                                                                             | 1                |
| 0xB020      | Start point Counter 1            | R<br>W         | 4    | 0x00001 to<br>0xFFFFF                                                                                                                                                                                            | Start Point                                                                                | 0                |
| 0xB024      | Repeat Count 1                   | R<br>W         | 4    | 0x00: infinite<br>0x01: 1 time<br> <br>0xFF: 255 times                                                                                                                                                           | Repeat Count                                                                               | 0                |
| 0xB028      | End point Counter 1              | R<br>W         | 4    | 0x00001 to<br>0xFFFFF                                                                                                                                                                                            | End point                                                                                  | 1                |
| 0xB02C      | Counter 1 Clear                  | R<br>W         | 4    | 0<br>1<br>2<br>4<br>8                                                                                                                                                                                            | Free Run<br>High Level Clear<br>Low Level Clear<br>Rising Edge Clear<br>Falling Edge Clear | 0                |
| 0xB060      | Selector<br>CAMERA TRIGGER 0     | R<br>W         | 4    | GPIO Selector:<br>Line Source                                                                                                                                                                                    | For Camera Trigger                                                                         |                  |
| 0xB064      | Selector<br>CAMERA TRIGGER 1     | R<br>W         | 4    | 0x00:CAMERA LVAL                                                                                                                                                                                                 | For Delayed Trigger                                                                        |                  |
| 0xB070      | Selector<br>GPIO PORT 1          | R<br>W         | 4    | 0x02:CAMERA FVAL<br>IN                                                                                                                                                                                           | TTL out 1                                                                                  |                  |
| 0xB074      | Selector<br>GPIO PORT 2          | R<br>W         | 4    | 0x03:CAMERA EEN IN<br>0x04:OPT IN 1<br>0x05:OPT IN 2                                                                                                                                                             | TTL out 2                                                                                  |                  |
| 0xB078      | Selector<br>GPIO PORT 3          | R<br>W         | 4    | 0x06:TTL IN 1<br>0x07:LVDS IN 1                                                                                                                                                                                  | Optical out 1                                                                              | 127              |
| 0xB07C      | Selector<br>GPIO PORT 4          | R<br>W         | 4    | 0x0C:SOFT TRIG 0<br>0x0D:SOFT TRIG 1<br>0x0E:SOFT TRIG 2                                                                                                                                                         | Optical out 2                                                                              |                  |
| 0xB090      | Selector<br>Pulse Generator 0    | R<br>W         | 4    | 0x0F:SOFT TRIG 2<br>0x0F:SOFT TRIG 3<br>0x10:Pulse Gen. 0                                                                                                                                                        |                                                                                            |                  |
| 0xB094      | Selector<br>Pulse Generator 1    | R<br>W         | 4    | 0x11:Pulse Gen. 1<br>Line Selector                                                                                                                                                                               |                                                                                            |                  |
| 0xB0A0      | Selector<br>Time Stamp Reset     | R<br>W         | 4    | 0x00:Camera trigger                                                                                                                                                                                              |                                                                                            |                  |
| 0xB0A4      | Selector Sequence<br>Table Reset | R W            | 4    | 0x01:Camera trigger 1 0x04:TTL OUT 1 0x05:TTL OUT 2 0x06:OPT OUT 1 0x07:OPT OUT 2 0x0C:Pulse Gen. 0 0x0D:Pulse Gen. 1 0x10:Time Stamp reset 0x11:Sequence Table reset Add 0x80 will result in low active output. |                                                                                            |                  |



# 10.External Appearance and Dimensions

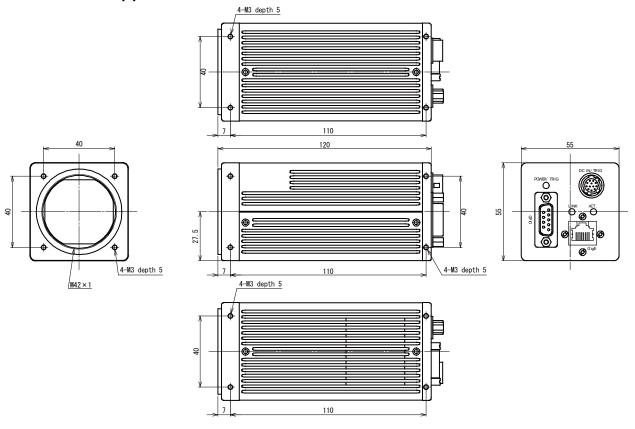



Fig. 29 Outline View (AM/AB-1600GE-P)

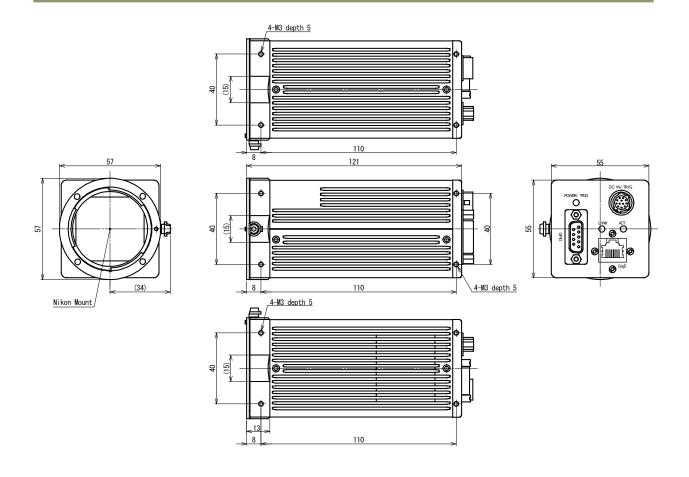



Fig.30 Outline View (AM/AB-1600GE-F)



# 11.Specifications

### 11.1 Spectral response

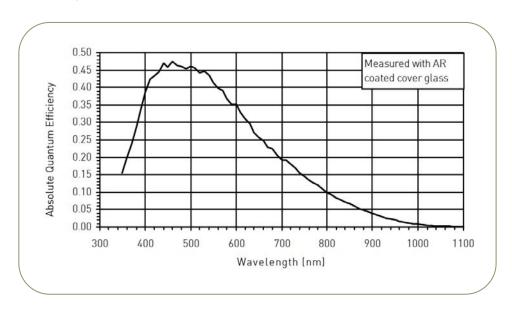



Fig. 31 Spectral response for AM-1600GE

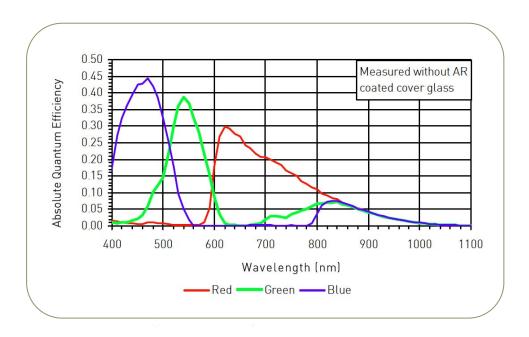



Fig. 32 Spectral response for AB-1600GE

# 11.2 Specification table

| Specifications                                                                            | AM-1600GE                                                                                                                                                            | AB-1600GE                                                                   |  |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| Scanning system                                                                           | Progre                                                                                                                                                               | ssive scan                                                                  |  |  |  |
| Frame rate full frame                                                                     | 3.04 frames/sec. Progr                                                                                                                                               | ressive (3327 lines/frame)                                                  |  |  |  |
| Pixel clock                                                                               | 30                                                                                                                                                                   | ) MHz                                                                       |  |  |  |
| Line frequency                                                                            | 10.135 kHz (1H = 98.66 μs)<br>(2960 pixel clock/line L ch and 2960 pixel clock / line R ch)                                                                          |                                                                             |  |  |  |
| CCD sensor                                                                                | 43.3mm diagonal Monochrome 43.3mm diagonal Bayer Color KAI-16000-AXA KAI-16000-CXA                                                                                   |                                                                             |  |  |  |
| Sensing area                                                                              | 36.05 (h) x 24.035 (v                                                                                                                                                | r) mm 43.3mm diagonal                                                       |  |  |  |
| Cell size                                                                                 | 7.4 (h) x                                                                                                                                                            | c 7.4 (v) μm                                                                |  |  |  |
| Active pixels                                                                             | 4872 (h                                                                                                                                                              | ) x3248 (v)                                                                 |  |  |  |
| Pixels in video output. Full scan 1/2 partial scan 1/4 partial scan Variable partial scan | 4872 (h) x 3248 (v) 3.04 fps.<br>4872(h) x 1372 (v) 5.51 fps<br>4872 (h) x 1028 (v) 9.25 fps.<br>Start line from 1 to 2448 by 1 lir<br>AB-1600GE, height(lines) from | H= 10.135 kHz<br>H = 10.135 kHz<br>ne unit for AM-1600GE, 2 lines units for |  |  |  |
| Vertical binning mode                                                                     | 2x (5.63 fps )                                                                                                                                                       | n/a                                                                         |  |  |  |
| Sensor sensitivity                                                                        | Output: 30μV/e<br>Saturation: 30,000 electrons                                                                                                                       |                                                                             |  |  |  |
| Sensitivity on sensor (minimum)                                                           | 0.02 Lux (Max. gain, Shutter OFF, 50% video )                                                                                                                        | 0.35 Lux (Max. gain, Shutter OFF,50%<br>Green, w/IR cut filter)             |  |  |  |
| S/N ratio                                                                                 | More than 56 dB (0dB gain)                                                                                                                                           | More than 56 dB (Green, 0dB gain)                                           |  |  |  |
| Digital video output                                                                      | GigE Vision Compliant<br>Mono8,Mono10,Mono10_Packed<br>Mono 12, Mono12_Packed                                                                                        | GigE Vision Compliant<br>BAyGR8, BAYGR10<br>BAYGR12                         |  |  |  |
| White balance                                                                             | n/a                                                                                                                                                                  | Manual/One push                                                             |  |  |  |
| Gain                                                                                      | Manual Master gain: -3dB to<br>Individual gain : -6c<br>AGC : -3 to +12 dB                                                                                           | o +12dB<br>dB to +6dB (AB-1600GE only)                                      |  |  |  |
| Black level                                                                               | Default setting: 32LSB(10 bit                                                                                                                                        | s output), Range: 0 LSB to 128 LSB                                          |  |  |  |
| Gamma/Knee                                                                                | LUT (γ=1.0(OF                                                                                                                                                        | FF), γ=0.45(ON) )                                                           |  |  |  |
| Blemish correction                                                                        | ON / OFF, Calibration                                                                                                                                                | n/a                                                                         |  |  |  |
| Shading compensation                                                                      | Provided                                                                                                                                                             | n/a                                                                         |  |  |  |
| L/R channel balance                                                                       | pro                                                                                                                                                                  | ovided                                                                      |  |  |  |
| Test pattern generator                                                                    | Provided                                                                                                                                                             |                                                                             |  |  |  |
| Synchronization                                                                           | Interr                                                                                                                                                               | nal X-tal                                                                   |  |  |  |
| GPIO Module Input/output switch Clock generator ( One) Pulse generators ( Two)            | 12-bit counter based on Pixel clock 19-bit counter programmable for length, start point, stop point, repeat                                                          |                                                                             |  |  |  |
| Hardware trigger modes                                                                    | Edge Pre-Select , Pulse Width Control, Frame Delay and Sequence                                                                                                      |                                                                             |  |  |  |
| OB area transfer mode                                                                     |                                                                                                                                                                      | / OFF Trigger IN, Video start, Video end                                    |  |  |  |
| Event message                                                                             | exposure start, exposure end,                                                                                                                                        | THISSEL IN, VIGEO STAFF, VIGEO EIIG                                         |  |  |  |



| Specifications                                                                                              | AM-1600GE                                                                                                                                                                                    | AB-1600GE                                                    |  |  |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| Electronic Shutter Programmable exposure Exposure Time (Abs) Exposure Auto continuous GPIO plus Pulse Width | 3(296µs) to 3327 L ( 328ms) in 1L steps<br>µsec - user definable. Same range as PE<br>100L to 3327L (1/101.35 sec to 1/3 sec )<br>max. 2 sec ( Can be set by 100µs unit or Pixel Clock unit) |                                                              |  |  |  |
| Control interface                                                                                           | Register based. GigE Vis                                                                                                                                                                     | ion / GenICam compliant                                      |  |  |  |
| Functions controlled via GigE<br>Vision Interface                                                           | Shutter, Gain, Black Level, Trigger mode, Read out mode,<br>GPIO setup ,ROI ( GenICam mandatory functions )                                                                                  |                                                              |  |  |  |
| GigE Vision Streaming Control                                                                               | Packet size, Delayed (Frame) read-out, inter-packet delay<br>Jumbo Frame can be set at max. 16020, Default packet size is 1476 Byte                                                          |                                                              |  |  |  |
| Indicators on rear panel                                                                                    | Power, Hardware trigger, GigE Link, GigE activity                                                                                                                                            |                                                              |  |  |  |
| Operating temperature                                                                                       | -5°C to +45°C                                                                                                                                                                                |                                                              |  |  |  |
| Humidity                                                                                                    | 20 - 80% nor                                                                                                                                                                                 | n-condensing                                                 |  |  |  |
| Storage temp/humidity                                                                                       | -25°C to +60°C/20% t                                                                                                                                                                         | o80 % non-condensing                                         |  |  |  |
| Vibration                                                                                                   | 10G (20Hz to                                                                                                                                                                                 | 200Hz, XYZ)                                                  |  |  |  |
| Shock                                                                                                       | 70                                                                                                                                                                                           | 0G                                                           |  |  |  |
| Regulatory                                                                                                  | CE (EN61000-6-2 and EN61000-6-3                                                                                                                                                              | ), FCC part 15 class B, RoHS, WEEE                           |  |  |  |
| Power                                                                                                       |                                                                                                                                                                                              | pical in continuous mode)<br>ax. in 800 lines partial scan ) |  |  |  |
| Lens mount                                                                                                  | Universal P mount, Rear protrusion must be less than 11.0mm or<br>Nikon F mount, Rear protrusion must be less than 12.0mm                                                                    |                                                              |  |  |  |
| Flange back                                                                                                 | Universal P mount : 45.5mm, Tolerance 0 to -0.05mm Nikon F mount : 46.5mm, Tolerance 0 to -0.05mm                                                                                            |                                                              |  |  |  |
| Dimensions                                                                                                  | 55 x 55 x 120 mm (W x H x D) (excluding surface projection)                                                                                                                                  |                                                              |  |  |  |
| Weight                                                                                                      | 430 g                                                                                                                                                                                        | 430 g                                                        |  |  |  |

Note: Above specifications are subject to change without notice In order to get specified performance, approx. 30 minutes of pre-heating is required.

### 12.Appendix

#### 12.1. Precautions

Personnel not trained in dealing with similar electronic devices should not service this camera. The camera contains components sensitive to electrostatic discharge. The handling of these devices should follow the requirements of electrostatic sensitive components.

Do not attempt to disassemble this camera.

Do not expose this camera to rain or moisture.

Do not face this camera towards the sun, extreme bright light or light reflecting objects, including laser sources.

When this camera is not in use, put the supplied lens cap on the lens mount.

Handle this camera with the maximum care.

Operate this camera only from the type of power source indicated on the camera.

Remove power from the camera during any modification work, such as changes of jumper and switch settings.

### 12.2. Typical Sensor Characteristics

The following effects may be observed on the video monitor screen. They do not indicate any fault of the camera, but do associate with typical sensor characteristics.

#### V. Aliasing

When the camera captures stripes, straight lines or similar sharp patterns, jagged image on the monitor may appear.

#### **Blemishes**

All cameras are shipped without visible image sensor blemishes.

Over time some pixel defects can occur. This does not have a practical effect on the operation of the camera. These will show up as white spots (blemishes).

Exposure to cosmic rays can cause blemishes to appear on the image sensor. Please take care to avoid exposure to cosmic rays during transportation and storage. It is recommended using sea shipment instead of air transportation flight in order to limit the influence of cosmic rays on the camera.

Pixel defects/blemishes may also emerge due to prolonged operation at elevated ambient temperature, due to high gain setting or during long time exposure. It is therefore recommended to operate the camera within its specifications.

### **Patterned Noise**

When the sensor captures a dark object at high temperature or is used for long time integration, fixed pattern noise may appear in the image.

### 12.3. Caution when mounting a lens on the camera

When mounting a lens on the camera dusts particles in the air may settle on the surface of the lens or the image sensor of the camera. It is therefore important to keep the protective caps on the lens and on the camera until the lens is mounted. Point the lens mount of the camera downward to prevent dust particles from landing on the optical surfaces of the camera. This work should be done in a dust free environment. Do not touch any of the optical surfaces of the camera or the lens.



### 12.4. Exportation

When exporting this product, please follow the export regulation of your own country.

#### 12.5. References

- 1. This manual for AM-1600GE / AB-1600GE can be downloaded from www.jai.com
- 2. Datasheet for AM-1600GE / AB-1600GE can be downloaded from www.jai.com
- 3. Camera control software can be downloaded from www.jai.com
- 4. Specifications for the CCD sensor Kodak KAI-16000-AXA and KAI-16000-CXA can be found on <a href="https://www.jai.com">www.jai.com</a>

### Index

| Α                                                                     | L                          |
|-----------------------------------------------------------------------|----------------------------|
| Auto Iris Lens                                                        | Lens mount                 |
| В                                                                     | M                          |
| Bayer mosaic color4                                                   | N                          |
| Bayer mosaic filter                                                   | Network Interface Cards23  |
| Blemishes                                                             | P                          |
| С                                                                     | partial scan               |
|                                                                       | Partial scanning41         |
| Camera Link6                                                          | Pin Assignment7            |
| CAMERA TRIGGER 12                                                     | Pixel Type 18, 19          |
| Cat6 Ethernet23, 24                                                   | Pixels in video output66   |
| CCD sensor 6, 66, 69                                                  | Preset Shutter67           |
| CCD Sensor                                                            | Programmable exposure 5    |
| continuous23, 31, 40, 41, 44                                          | Progressive scan4          |
| Continuous operation5                                                 | Pulse Generators           |
| ·                                                                     | Pulse width control(PWC)31 |
| D                                                                     | D                          |
| Delayed Readout Mode23, 49                                            | R                          |
| betayed Readout Mode23, 47                                            | Register 16, 17, 49        |
| _                                                                     | RJ-45 7                    |
| E                                                                     | ROI                        |
| E.I (EDC)                                                             | 101                        |
| Edge pre-select(EPS)                                                  | _                          |
| Electronic Shutter                                                    | S                          |
| EPS                                                                   |                            |
| Exposure Time Abs                                                     | SDK4, 33, 49               |
| external trigger                                                      | Sequential trigger         |
| _                                                                     |                            |
| G                                                                     | Spectral response          |
|                                                                       | Switches/Routers           |
| Gain66, 67                                                            | Synchronization66          |
| GenlCam 33                                                            |                            |
| Gigabit Ethernet7                                                     | T                          |
| GigE Vision compliant                                                 | -                          |
| GigE Vision Streaming Protocol18, 19                                  | transmission bandwidth23   |
| GPIO7, 9, 12, 34, 48, 62                                              | Trigger input34            |
| GPIO programming examples                                             | Trigger mode               |
| Н                                                                     | V                          |
| Hiroso 7 22 44                                                        | Vortical Rinning 24 42     |
| Hirose       7, 23, 46         Host-based color interpolation       4 | Vertical Binning31, 42     |
|                                                                       | X                          |
| 1                                                                     | XML 4                      |
| Inter-Packet Delay 23                                                 | AIYIL 4                    |

# Changes history

| Month/Year | Revision | Contents  |
|------------|----------|-----------|
|            | 1.0      | New issue |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |
|            |          |           |



### **User's Record**

|                       | Camera type:           | AM-1600GE / AB-1600GE                  |  |  |  |  |
|-----------------------|------------------------|----------------------------------------|--|--|--|--|
|                       | Revision:              |                                        |  |  |  |  |
|                       | Serial No.             |                                        |  |  |  |  |
|                       | Firmware version       | ·                                      |  |  |  |  |
| For camera            | revision history, plea | se contact your local JAI distributor. |  |  |  |  |
| User's Mod            | e Settings.            |                                        |  |  |  |  |
|                       |                        |                                        |  |  |  |  |
|                       |                        |                                        |  |  |  |  |
| User's Modifications. |                        |                                        |  |  |  |  |
|                       |                        |                                        |  |  |  |  |

Company and product names mentioned in this manual are trademarks or registered trademarks of their respective owners. JAI A-S cannot be held responsible for any technical or typographical errors and reserves the right to make changes to products and documentation without prior notification.

 Europe, Middle East & Africa
 Asia Pacific
 Americas

 Phone +45 4457 8888
 Phone +81 45 440 0154
 Phone (toll-free) +1 800 445

 Fax +45 4491 8880
 Fax +81 45 440 0166
 Phone +1 408 383 0300

Visit our web site at www.jai.com

